JETP Letters

, Volume 84, Issue 10, pp 542–546

Crystallization waves in a dusty plasma

  • B. A. Klumov
  • M. Rubin-Zuzic
  • G. E. Morfill
Plasma, Gases


Crystallization waves in the dusty component of a complex plasma, which were recently observed experimentally, have been investigated numerically. The evolution of the system of charged microparticles whose interaction between each other is described by a screened Coulomb potential (Yukawa potential) has been numerically simulated using the molecular dynamics method. It has been shown that the process of the formation and propagation of a crystallization wave in such a system is fundamentally three-dimensional. Analysis of the local structure of dust particles behind the crystallization wave front indicates the coexistence of different types of the crystal lattice including the metastable phase, i.e., a nonequilibrium phase transition.

PACS numbers

67.57.Lm 76.60.-k 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].Google Scholar
  2. 2.
    P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (Inst. of Physics, Bristol, 2002).CrossRefGoogle Scholar
  3. 3.
    V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Usp. Fiz. Nauk 174, 495 (2004) [Phys. Usp. 47, 447 (2004)].Google Scholar
  4. 4.
    S. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).CrossRefADSGoogle Scholar
  5. 5.
    M. Horanyi et al., Rev. Geophys. 42, RG4002 (2004).Google Scholar
  6. 6.
    B. A. Klumov, S. I. Popel, and G. E. Morfill, JETP 100, 152 (2005).CrossRefGoogle Scholar
  7. 7.
    B. A. Klumov, S. V. Vladimirov, and G. E. Morfill, JETP Lett. 82, 632 (2005).CrossRefGoogle Scholar
  8. 8.
    V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    G. E. Morfill et al., Phys. Rev. Lett. 92, 175004 (2004).Google Scholar
  10. 10.
    J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).CrossRefADSGoogle Scholar
  11. 11.
    H. Thomas, G. Morfill, V. Demmel, and J. Goree, Phys. Rev. Lett. 73, 652 (1994).CrossRefADSGoogle Scholar
  12. 12.
    H. Ikezi, Phys. Fluids 29, 1764 (1986).CrossRefADSGoogle Scholar
  13. 13.
    M. Rubin-Zuzic et al., Nature Phys. 2, 181 (2006).CrossRefADSGoogle Scholar
  14. 14.
    M. Rubin-Zuzic et al., in Proceedings of 4th International Conference on the Physics of Dusty Plasmas, ICPDP4 (Orlean, France, 2005).Google Scholar
  15. 15.
    U. Konopka, G. Morfill, and L. Ratke, Phys. Rev. Lett. 84, 891 (2000).CrossRefADSGoogle Scholar
  16. 16.
    A. V. Ivlev et al., Phys. Plasmas 12, 092104 (2005).Google Scholar
  17. 17.
    B. A. Klumov, A. V. Ivlev, and G. Morfill, JETP Lett. 78, 300 (2003).CrossRefADSGoogle Scholar
  18. 18.
    D. Samsonov et al., Phys. Rev. Lett. 92, 255004 (2004).Google Scholar
  19. 19.
    M. Zuzic, A. V. Ivlev, J. Goree, et al., Phys. Rev. Lett. 85, 4064 (2000).CrossRefADSGoogle Scholar
  20. 20.
    A. P. Hynninen and M. Dijkstra, Phys. Rev. E 72, 051402 (2005).Google Scholar
  21. 21.
    P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981); Phys. Rev. B 28, 784 (1983).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • B. A. Klumov
    • 1
  • M. Rubin-Zuzic
    • 1
  • G. E. Morfill
    • 1
  1. 1.Max-Planck-Institut für Extraterrestrische PhysikGarchingGermany

Personalised recommendations