JETP Letters

, Volume 84, Issue 10, pp 531–536 | Cite as

Coulomb integrals in Liouville theory and Liouville gravity

  • V. A. Fateev
  • A. V. Litvinov
Gravity, Astrophysics

Abstract

The four-point correlation function has been studied in Liouville field theory. If one of the fields is degenerate, such a function is described in terms of Coulomb integrals. Some nontrivial relations for these integrals have been found that can be used to obtain new exact results in conformal field theory. In particular, a four-point correlation function has been calculated in minimal quantum gravity. The result agrees with the results obtained recently by different methods [A. A. Belavin and A. B. Zamolodchikov, JETP Lett. 82, 7 (2005); Theor. Math. Phys. 147, 729 (2006); A. B. Zamolodchikov, Theor. Math. Phys. 142, 183 (2005); I. K. Kostov and V. B. Petkova, Theor. Math. Phys. 146, 108 (2006)].

PACS numbers

11.25.Hf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Belavin and A. B. Zamolodchikov, JETP Lett. 82, 7 (2005); Theor. Math. Phys. 147, 729 (2006); A. B. Zamolodchikov, Theor. Math. Phys. 142, 183 (2005).CrossRefGoogle Scholar
  2. 2.
    I. K. Kostov and V. B. Petkova, Theor. Math. Phys. 146, 108 (2006).CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B 241, 333 (1984).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B 240, 312 (1984); Nucl. Phys. B 251, 691 (1985); Phys. Lett. B 154B, 291 (1985).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A. B. Zamolodchikov and V. A. Fateev, Sov. Phys. JETP 62, 215 (1985).MathSciNetGoogle Scholar
  6. 6.
    A. B. Zamolodchikov and V. A. Fateev, Yad. Fiz. 43, 1031 (1986) [Sov. J. Nucl. Phys. 43, 657 (1986)].Google Scholar
  7. 7.
    A. M. Polyakov, Phys. Lett. B 103B, 207 (1981).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. Goulian and M. Li, Phys. Rev. Lett. 66, 2051 (1991).CrossRefADSGoogle Scholar
  9. 9.
    P. Baseilhac and V. A. Fateev, Nucl. Phys. B 532, 567 (1998).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    H. Dorn and H. J. Otto, Phys. Lett. B 291, 39 (1992); Nucl. Phys. B 429, 375 (1994).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. B. Zamolodchikov and A. B. Zamolodchikov, Nucl. Phys. B 477, 577 (1996).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    V. A. Fateev and A. V. Litvinov, Pis’ma Zh. Éksp. Teor. Fiz. 81, 728 (2005) [JETP Lett. 81, 594 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. A. Fateev
    • 1
    • 2
  • A. V. Litvinov
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Laboratoire de Physique Théorique et AstroparticulesUniversité Montpelier IIMontpelierFrance

Personalised recommendations