Advertisement

JETP Letters

, Volume 84, Issue 9, pp 518–523 | Cite as

Pressure-induced electron spin transition in the paramagnetic phase of the GdFe3(BO3)4 Heisenberg magnet

  • I. S. Lyubutin
  • A. G. Gavriliuk
  • V. V. Struzhkin
  • S. G. Ovchinnikov
  • S. A. Kharlamova
  • L. N. Bezmaternykh
  • M. Hu
  • P. Chow
Condensed Matter

Abstract

The HS → LS spin crossover effect (high-spin → low-spin transition) induced by high pressure in the range 45–53 GPa is observed in trivalent Fe3+ ions in the paramagnetic phase of a Gd57Fe3(BO3)4 gadolinium iron borate crystal. This effect is studied in high-pressure diamond-anvil cells by two experimental methods using synchrotron radiation: nuclear resonant forward scattering (NFS) and Fe K β high-resolution x-ray emission spectroscopy (XES). The manifestation of the crossover in the paramagnetic phase, which has no order parameter to distinguish between the HS and LS states, correlates with the optical-gap jump and with the insulator-semiconductor transition in the crystal. Based on a theoretical many-electron model, an explanation of this effect at high pressures is proposed.

PACS numbers

61.50.Ks 71.27.+a 71.30.+h 81.40.Tv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Leonyuk and L. I. Leonyuk, Prog. Cryst. Growth Charact. 31, 179 (1995); N. I. Leonyuk, Prog. Cryst. Growth Charact. 31, 279 (1995).CrossRefGoogle Scholar
  2. 2.
    A. D. Balaev, L. N. Bezmaternykh, I. A. Gudim, et al., J. Magn. Magn. Mater. C 258–259, 532 (2003).CrossRefGoogle Scholar
  3. 3.
    S. A. Kharlamova, S. G. Ovchinnikov, A. D. Balaev, et al., Zh. Éksp. Teor. Fiz. 128, 1252 (2005) [JETP 101, 1098 (2005)].Google Scholar
  4. 4.
    A. I. Pankrats, G. A. Petrakovski, L. N. Bezmaternykh, et al., JETP 99, 766 (2004).CrossRefGoogle Scholar
  5. 5.
    A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popkov, Rare-Earth Ions in the Magnetic Ordered Crystals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  6. 6.
    A. K. Zvezdin, S. S. Krotov, A. M. Kadomtseva, et al., JETP Lett. 81, 335 (2005).CrossRefGoogle Scholar
  7. 7.
    A. G. Gavrilyuk, S. A. Kharlamova, I. S. Lyubutin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 80, 482 (2004) [JETP Lett. 80, 426 (2004)].Google Scholar
  8. 8.
    A. G. Gavriliuk, S. A. Kharlamova, I. S. Lyubutin, et al., J. Phys.: Condens. Matter. 17, 7599 (2005).CrossRefADSGoogle Scholar
  9. 9.
    L. N. Bezmaternykh, S. A. Kharlamova, and V. L. Temerov, Kristallografiya 49, 945 (2004) [Crystallogr. Rep. 49, 855 (2004)].Google Scholar
  10. 10.
    R. Ruffer and A. I. Chumakov, Hyperfine Interact. 97/98, 589 (1996).CrossRefGoogle Scholar
  11. 11.
    G. V. Smirnov, Hyperfine Interact. 123/124, 31 (1999).CrossRefGoogle Scholar
  12. 12.
    A. G. Gavriliuk, J.-F. Lin, I. S. Lyubutin, et al., JETP Lett. 84, 190 (2006).CrossRefGoogle Scholar
  13. 13.
    Yu. V. Shvyd’ko, Hyperfine Interact. 125, 173 (2000).CrossRefGoogle Scholar
  14. 14.
    J. Badro, G. Fiquet, V. V. Struzhkin, et al., Phys. Rev. Lett. 89, 205504 (2002).Google Scholar
  15. 15.
    J. Badro, V. Struzhkin, J.-F. Shu, et al., Phys. Rev. Lett. 83, 4101 (1999).CrossRefADSGoogle Scholar
  16. 16.
    I. A. Troyan, A. G. Gavrilyuk, V. A. Sarkisyan, et al., Pis’ma Zh. Éksp. Teor. Fiz. 74, 26 (2001) [JETP Lett. 74, 24 (2001)].Google Scholar
  17. 17.
    A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, et al., Zh. Éksp. Teor. Fiz. 127, 780 (2005) [JETP 100, 688 (2005)].Google Scholar
  18. 18.
    A. G. Gavriliuk, V. V. Struzhkin, I. S. Lyubutin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 82, 243 (2005) [JETP Lett. 82, 224 (2005)].Google Scholar
  19. 19.
    G. R. Hearne, M. P. Pasternak, R. D. Taylor, et al., Phys. Rev. B 51, 11 495 (1995).CrossRefGoogle Scholar
  20. 20.
    W. M. Xu, O. Naaman, G. Kh. Rozenberg, et al., Phys. Rev. B 64, 094411 (2001).Google Scholar
  21. 21.
    M. P. Pasternak, G. Kh. Rozenberg, G. Yu. Machavariani, et al., Phys. Rev. Lett. 82, 4663 (1999).CrossRefADSGoogle Scholar
  22. 22.
    I. S. Lyubutin, A. G. Gavrilyuk, I. A. Troyan, et al., Pis’ma Zh. Éksp. Teor. Fiz. 82, 797 (2005) [JETP Lett. 82, 702 (2005)].Google Scholar
  23. 23.
    V. N. Zabluda, S. G. Ovchinnikov, A. M. Potseluĭko, and S. A. Kharlamova, Fiz. Tverd. Tela (St. Petersburg) 47, 474 (2005) [Phys. Solid State 47, 489 (2005)].Google Scholar
  24. 24.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1951).CrossRefGoogle Scholar
  25. 25.
    A. G. Gavrilyuk, I. A. Troyan, S. G. Ovchinnikov, et al., Zh. Éksp. Teor. Fiz. 126, 650 (2004) [JETP 99, 566 (2004)].Google Scholar
  26. 26.
    A. G. Gavriliuk, I. A. Trojan, R. Boehler, et al., Pis’ma Zh. Éksp. Teor. Fiz. 75, 25 (2002) [JETP Lett. 75, 23 (2002)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. S. Lyubutin
    • 1
  • A. G. Gavriliuk
    • 1
    • 2
    • 3
  • V. V. Struzhkin
    • 3
  • S. G. Ovchinnikov
    • 4
  • S. A. Kharlamova
    • 4
    • 5
  • L. N. Bezmaternykh
    • 4
  • M. Hu
    • 5
  • P. Chow
    • 5
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of High-Pressure PhysicsRussian Academy of SciencesTroitsk, Moscow regionRussia
  3. 3.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA
  4. 4.Kirenskii Institute of Physics, Siberian DivisionRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia
  5. 5.Advanced Photon SourceANLArgonneUSA

Personalised recommendations