JETP Letters

, Volume 84, Issue 8, pp 418–424 | Cite as

Higher equations of motion in the N = 1 SUSY Liouville field theory

  • A. A. Belavin
  • Al. B. Zamolodchikov
Article

Abstract

As in the ordinary bosonic Liouville field theory, in its N = 1 supersymmetric version, an infinite set of operator valued relations, the “higher equations of motions,” hold. The equations are in one to one correspondence with the singular representations of the super Virasoro algebra and enumerated by a pair of natural numbers (m, n). We explicitly demonstrate these equations in the classical case, where the equations of type (1, n) survive and can be interpreted directly as relations for classical fields. The general form of higher equations of motion is established in the quantum case, both for the Neveu-Schwarz and Ramond series.

PACS numbers

11.25.Hf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al. Zamolodchikov, Int. J. Mod. Phys. A 19[S2], 510 (2004); hep-th/0312279.CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    A. Belavin, A. Polyakov, and A. Zamolodchikov, Nucl. Phys. B 241, 333 (1984).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    A. Belavin and Al. Zamolodchikov, Teor. Mat. Fiz. 147, 339 (2006); hep-th/0510214, pp. 16–46.MathSciNetGoogle Scholar
  4. 4.
    Al. Zamolodchikov, Teor. Mat. Fiz. 142, 183 (2005); hep-th/0505063.MathSciNetGoogle Scholar
  5. 5.
    A. Polyakov, Phys. Lett. B 103B, 211 (1981).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    J. Arvis, Nucl. Phys. B 212, 151 (1983); Nucl. Phys. B 218, 309 (1983).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    E. D’Hoker, Phys. Rev. D 28, 1346 (1983).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    O. Babelon, Phys. Lett. B 141B, 353 (1984).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    J. Distler, Z. Hlousek, and H. Kawai, Int. J. Mod. Phys. A 5, 391 (1990).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    R. Poghossian, Nucl. Phys. B 496, 451 (1997).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    R. Rashkov and M. Stanishkov, Phys. Lett. B 380, 49 (1996).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    L. Kadanoff and H. Ceva, Phys. Rev. B 3, 3918 (1971).CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    V. Kac and V. G. Kac, Infinite-Dimensional Lie Algebras (Birkhäuser, Boston, 1984), Prog. Math., Vol. 44.Google Scholar
  14. 14.
    A. Zamolodchikov and Al. Zamolodchikov, Preprint hep-th/0101182.Google Scholar
  15. 15.
    C. Imbimbo, S. Mahapatra, and S. Mukhi, Nucl. Phys. B 375, 399 (1992).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    T. Fukuda and K. Hosomichi, Nucl. Phys. B 635, 215 (2002); hep-th/0202032.CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    C. Ahn, C. Rim, and M. Stanishkov, Nucl. Phys. B 636, 497 (2002); hep-th/0202043.MathSciNetADSGoogle Scholar
  18. 18.
    V. Fateev, A. Zamolodchikov, and Al. Zamolodchikov, hep-th/0001012.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. A. Belavin
    • 1
  • Al. B. Zamolodchikov
    • 2
    • 3
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Laboratoire de Physique Théorique et AstroparticulesUniversité Montpelier IIMontpelierFrance
  3. 3.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations