Advertisement

JETP Letters

, Volume 84, Issue 5, pp 275–279 | Cite as

Effect of dipole forces on the structure of the liquid phases of DNA

  • V. L. Golo
  • E. I. Kats
  • I. P. Kikot’
Condensed Matter

Abstract

The dipole-dipole contribution to the energy of the pair interaction between DNA molecules has been calculated and analyzed. Rigid fragments of DNA, i.e., of a length of about the persistent length, which have discrete dipole moments of base pairs, are considered. For a given distance between the centers of mass of molecules, the energy of the dipole-dipole interaction is a function of three angular variables; the angles ϕ1 and ϕ2 between the central dipoles of both molecules and the z axis passing through the centers of the molecules, as well as the angle ξ between long axes of the molecules, are taken as these variables. It is shown that the dipole energy has minima when the mutual orientation of the molecules satisfies one of the following conditions: (i) ϕ1 = ϕ2 = 0 or (ii) ϕ1 = ϕ2 = π. The cholesteric twist angle ξ can be both positive and negative in dependence on the type of the minimum. For realistic cholesteric dispersion parameters, the dipole energy is only slightly lower than the experimentally known binding energy of the molecules in dispersion. The results allow the assumption that the dipole forces significantly affect the structure and other properties of DNA suspensions; in particular, they can lead to nontrivial texture phenomena, biaxial correlation, and multistability.

PACS numbers

87.15.-v 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Thomas and T. J. Thomas, Cell Mol. Life Sci. 58, 244 (2001).CrossRefGoogle Scholar
  2. 2.
    L. van Dam, N. Korolev, and L. Nordenskiold, Nucleic Acids Res. 30, 419 (2002).CrossRefGoogle Scholar
  3. 3.
    Yu. M. Evdokimov, V. I. Sal’yanov, B. V. Mkhedlishvili, et al., Sens. Sist. 13, 82 (1999).Google Scholar
  4. 4.
    E. Raspaud, D. Durand, and F. Livolant, Biophys. J. 88, 392 (2005).CrossRefGoogle Scholar
  5. 5.
    V. A. Belyakov, V. P. Orlov, S. V. Semenov, et al., Liq. Cryst. 20, 777 (1996).Google Scholar
  6. 6.
    P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, 1993; Mir, Moscow, 1982).Google Scholar
  7. 7.
    A. A. Kornyshev and S. Leikin, J. Chem. Phys. 107, 3656 (1997).CrossRefADSGoogle Scholar
  8. 8.
    A. A. Kornyshev and S. Leikin, Phys. Rev. E 62, 2576 (2000).CrossRefADSGoogle Scholar
  9. 9.
    A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 84, 2537 (2001).CrossRefADSGoogle Scholar
  10. 10.
    B. Samori, M. A. Osipov, I. Domini, and A. Bartolini, Int. J. Biol. Macromol. 15, 353 (1993).CrossRefGoogle Scholar
  11. 11.
    Y. H. Kim, J. Phys. (Paris) 43, 559 (1982).Google Scholar
  12. 12.
    G. S. Manning, Biopolymers 19, 37 (1980).CrossRefGoogle Scholar
  13. 13.
    J. Sponer, J. Leszcynski, and P. Hobza, Biopolymers 61, 3 (2002).CrossRefGoogle Scholar
  14. 14.
    A. A. Kornyshev, D. J. Lee, S. Leikin, et al., Phys. Rev. Lett. 95, 148102 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. L. Golo
    • 1
  • E. I. Kats
    • 2
    • 3
  • I. P. Kikot’
    • 1
  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Institut Laue-LangevinGrenobleFrance

Personalised recommendations