JETP Letters

, Volume 84, Issue 3, pp 115–118 | Cite as

Metal-semiconductor (semimetal) superlattices on a graphite sheet with vacancies

  • L. A. Chernozatonskii
  • P. B. Sorokin
  • E. É. Belova
  • J. Brüning
  • A. S. Fedorov
Article

Abstract

It has been found that periodically closely spaced vacancies on a graphite sheet cause a significant rearrangement of its electronic spectrum: metallic waveguides with a high density of states near the Fermi level are formed along the vacancy lines. In the direction perpendicular to these lines, the spectrum exhibits a semimetal or semiconductor character with a gap where a vacancy miniband is degenerated into impurity levels.

PACS numbers

61.72.Ji 68.65.Cd 71.23.-k 73.21.Cd 81.05.Uw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).CrossRefADSGoogle Scholar
  2. 2.
    K. S. Novoselov, D. Jiang, F. Schedin, et al., Proc. Natl. Acad. Sci. USA 102, 10 451 (2005).Google Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 198 (2006).Google Scholar
  4. 4.
    Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Ed. by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, 2001), Topics in Applied Physics, Vol. 80.Google Scholar
  5. 5.
    A. A. El-Barbary, R. H. Telling, C. P. Ewels, et al., Phys. Rev. B 68, 144107 (2003).Google Scholar
  6. 6.
    M. A. H. Vozmediano, M. P. López-Sancho, T. Stauber, and F. Guinea, Phys. Rev. B 72, 155121 (2005).Google Scholar
  7. 7.
    V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, et al., Phys. Rev. Lett. 96, 036801 (2006).Google Scholar
  8. 8.
    M. Terrones, P. M. Ajayan, F. Banhart, et al., Appl. Phys. A 74, 355 (2002).CrossRefADSGoogle Scholar
  9. 9.
    P. O. Lehtinen, A. S. Foster, Y. Ma, et al., Phys. Rev. Lett. 93, 187202 (2004).Google Scholar
  10. 10.
    K. H. Han, D. Spemann, P. Esquinazi, et al., Adv. Mater. 15, 1719 (2003).CrossRefGoogle Scholar
  11. 11.
    G.-D. Lee, C. Z. Wang, E. Yoon, et al., Phys. Rev. Lett. 95, 205501 (2005).Google Scholar
  12. 12.
    D. W. Brenner, Phys. Rev. B 42, 9458 (1990).CrossRefADSGoogle Scholar
  13. 13.
    A. Garg and S. B. Sinnott, Phys. Rev. B 60, 786 (1999).CrossRefGoogle Scholar
  14. 14.
    S. B. Sinnott, O. A. Shenderova, C. T. White, and D. W. Brenner, Carbon 36, 1 (1998).CrossRefGoogle Scholar
  15. 15.
  16. 16.
    W. Kohn and L. J. Sham, Phys. Rev. [Sect. A] 140, 1133 (1965).MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    P. Hohenberg and W. Kohn, Phys. Rev. [Sect. B] 136, 864 (1964).MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefADSGoogle Scholar
  19. 19.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003).Google Scholar
  20. 20.
    T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).Google Scholar
  21. 21.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).CrossRefADSGoogle Scholar
  22. 22.
    S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).CrossRefADSGoogle Scholar
  23. 23.
    K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003).Google Scholar
  24. 24.
    M. Herman, Semiconductor Superlattices (Akademie, Berlin, 1986; Mir, Moscow, 1990).Google Scholar
  25. 25.
    T. Matsui, H. Kambara, Y. Niimi, et al., Phys. Rev. Lett. 94, 226403 (2005).Google Scholar
  26. 26.
    N. Andriotis, M. Menon, R. M. Sheetz, and L. A. Chernozatonskii, Phys. Rev. Lett. 90, 026801 (2003).Google Scholar
  27. 27.
    P. Flükiger, H. P. Lüthi, S. Portmann, and J. Weber, MOLEKEL 4.0 (Swiss Center for Scientific Computing, Manno, Switzerland, 2000).Google Scholar
  28. 28.

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • L. A. Chernozatonskii
    • 1
  • P. B. Sorokin
    • 1
  • E. É. Belova
    • 1
  • J. Brüning
    • 2
  • A. S. Fedorov
    • 3
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of MathematicsHumboldt University of BerlinBerlinGermany
  3. 3.Kirenskiĭ Institute of Physics, Siberian DivisionRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia

Personalised recommendations