JETP Letters

, Volume 83, Issue 12, pp 530–535 | Cite as

Solution of the problem of catastrophic relaxation of homogeneous spin precession in superfluid 3He-B

  • Yu. M. Bunkov
  • V. S. L’vov
  • G. E. Volovik


The quantitative analysis of the “catastrophic relaxation” of the coherent spin precession in 3He-B is presented. This phenomenon has been observed below a temperature of about 0.5 T c as an abrupt shortening of the induction signal decay. It is explained in terms of the decay instability of the homogeneous transverse NMR mode into spin waves of the longitudinal NMR. Recently, the cross interaction amplitude between the two modes has been calculated by Sourovtsev and Fomin [9] for the so-called Brinkman-Smith configuration, i.e., for the orientation of the orbital momentum of Cooper pairs along the magnetic field, LH. In their treatment, the interaction is caused by the anisotropy of the speed of the spin waves. We found that, in the more general case of the nonparallel orientation of L corresponding to the typical conditions of the experiment, the spin-orbital interaction provides the additional interaction between the modes. By analyzing the experimental data, we are able to distinguish which contribution is dominating in different regimes.

PACS numbers

67.57.Lm 76.50.+g 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Suhl, J. Phys. Chem. Solids 1, 209 (1959).CrossRefADSGoogle Scholar
  2. 2.
    V. S. L’vov, Wave Turbulence under Parametric Excitation (Springer, Berlin, 1994).zbMATHGoogle Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 3rd ed. (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).Google Scholar
  4. 4.
    T. Matsushita, R. Nomura, H. H. Hensley, et al., J. Low Temp. Phys. 105, 67 (1996).CrossRefADSGoogle Scholar
  5. 5.
    I. A. Fomin, Pis’ma Zh. Éksp. Teor. Fiz. 30, 179 (1979) [JETP Lett. 30, 164 (1979)].Google Scholar
  6. 6.
    A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharsky, JETP Lett. 39, 469 (1984).ADSGoogle Scholar
  7. 7.
    See review: Yu. M. Bunkov, in Progress in Low Temperature Physics, Ed. by W. Halperin (Elsevier, Amsterdam, 1995), Vol. 14, p. 69.Google Scholar
  8. 8.
    Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharsky, et al., Europhys. Lett. 8, 645 (1989).ADSGoogle Scholar
  9. 9.
    E. V. Sourovtsev and I. A. Fomin, Pis’ma Zh. Éksp. Teor. Fiz. 83, 479 (2006) [JETP Lett. 83, 410 (2006)].Google Scholar
  10. 10.
    A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharsky, AIP Conf. Proc. 194, 15 (1989).CrossRefADSGoogle Scholar
  11. 11.
    Yu. M. Bunkov, V. V. Dmitriev, Yu. M. Mukharsky, et al., Physica B (Amsterdam) 165, 675 (1990).ADSGoogle Scholar
  12. 12.
    W. F. Brinkman and H. Smith, Phys. Lett. A 53, 43 (1975).CrossRefADSGoogle Scholar
  13. 13.
    See review: I. A. Fomin, in Helium Three, Ed. by W. P. Halperin and L. P. Pitaevsky (Elsevier, Amsterdam, 1995).Google Scholar
  14. 14.
    Yu. M. Bunkov, V. L. Golo, and O. D. Timofeevskaya, Czech. J. Phys. 46, 213 (1996); J. Low Temp. Phys. 137, 625 (2004).Google Scholar
  15. 15.
    Yu. M. Bunkov, J. Low Temp. Phys. 135, 337 (2004).CrossRefADSGoogle Scholar
  16. 16.
    D. A. Geller and D. M. Lee, Phys. Rev. Lett. 85, 1032 (2000).CrossRefADSGoogle Scholar
  17. 17.
    D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).Google Scholar
  18. 18.
    T. Sh. Misirpashaev and G. E. Volovik, Sov. Phys. JETP 75, 650 (1992).MathSciNetGoogle Scholar
  19. 19.
    Yu. M. Bunkov, V. V. Dmitriev, A. M. Markelov, et al., Phys. Rev. Lett. 65, 867 (1990).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • Yu. M. Bunkov
    • 1
  • V. S. L’vov
    • 2
    • 3
  • G. E. Volovik
    • 3
    • 4
  1. 1.Centre de Recherches sur les Très Basses TempératuresCNRSGrenobleFrance
  2. 2.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  3. 3.Low Temperature LaboratoryHelsinki University of TechnologyFinland
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations