JETP Letters

, Volume 83, Issue 11, pp 501–504 | Cite as

On the mechanism of the absorption of femtosecond laser pulses in the melting and ablation of Si and GaAs

  • M. B. Agranat
  • S. I. Anisimov
  • S. I. Ashitkov
  • A. V. Ovchinnikov
  • P. S. Kondratenko
  • D. S. Sitnikov
  • V. E. Fortov
Article

Abstract

The melting and ablation thresholds have been measured for Si and GaAs irradiated by 1240-nm femtosecond pulses of a chromium-forsterite laser, i.e., when the photon energy is lower than the bandgap width. A small difference of these quantities from the respective melting and ablation thresholds measured for the action of the 620-nm second-harmonic pulses with a photon energy higher than the bandgap width cannot be explained using available theoretical models. A new approach to the mechanism of the appearance of the electron-hole plasma and the formation of a thin, strongly absorbing surface layer in semiconductors irradiated by femtosecond laser pulses of the visible and infrared spectral ranges has been proposed on the basis of the avalanche mechanism of the filling of the conduction band.

PACS numbers

63.90.+t 78.90.+t 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Ashitkov, A. V. Ovchinnikov, and M. B. Agranat, Pis’ma Zh. Éksp. Teor. Fiz. 79, 657 (2004) [JETP Lett. 79, 529 (2004)].Google Scholar
  2. 2.
    K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000).CrossRefADSGoogle Scholar
  3. 3.
    K. Sokolowski-Tinten, J. Bialkowski, M. Boring, et al., Phys. Rev. B 58, R11 805 (1998).Google Scholar
  4. 4.
    M. B. Agranat, S. I. Ashitkov, A. A. Ivanov, et al., Kvantovaya Elektron. (Moscow) 34, 506 (2004).CrossRefGoogle Scholar
  5. 5.
    S. I. Ashitkov, M. B. Agranat, P. S. Kondratenko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 75, 96 (2002) [JETP Lett. 75, 87 (2002)].Google Scholar
  6. 6.
    D. von der Linde and H. Shuler, J. Opt. Soc. Am. B 13, 216 (1996).ADSGoogle Scholar
  7. 7.
    Handbook of Optical Constants of Solids II, Ed. by E. D. Palik (Academic, San Diego, 1991).Google Scholar
  8. 8.
    P. Mannion, J. Magee, E. Coyne, et al., Proc. SPIE 4876, 470 (2003).Google Scholar
  9. 9.
    A. P. Joglekar, H. Liu, E. Meyhofer, et al., Proc. Natl. Acad. Sci. USA 101, 5856 (2004).CrossRefADSGoogle Scholar
  10. 10.
    S. Mao, F. Quere, S. Guizard, et al., Appl. Phys. A 79, 1695 (2004).CrossRefADSGoogle Scholar
  11. 11.
    B. C. Stuart, M. D. Feit, S. Herman, et al., Phys. Rev. B 53, 1749 (1996).CrossRefADSGoogle Scholar
  12. 12.
    B. G. Gorshkov, A. S. Epifanov, and A. A. Manenkov, Zh. Éksp. Teor. Fiz. 76, 617 (1979) [Sov. Phys. JETP 49, 309 (1979)].ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. B. Agranat
    • 1
  • S. I. Anisimov
    • 1
    • 2
  • S. I. Ashitkov
    • 1
  • A. V. Ovchinnikov
    • 1
  • P. S. Kondratenko
    • 3
  • D. S. Sitnikov
    • 1
  • V. E. Fortov
    • 1
  1. 1.Institute of High Energy DensitiesRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Nuclear Safety InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations