Free magnetic moments in disordered metals

  • S. Kettemann
  • E. R. Mucciolo


The screening of magnetic moments in metals, the Kondo effect, is found to be quenched with a finite probability in the presence of nonmagnetic disorder. Numerical results for a disordered electron system show that the distribution of Kondo temperatures deviates strongly from the result expected from the random matrix theory. A pronounced second peak emerges for small Kondo temperatures, showing that the probability that magnetic moments remain unscreened at low temperatures increases with disorder. Analytical calculations, taking into account the correlations between eigenfunction intensities, yield a finite width for the distribution in the thermodynamic limit. Experimental consequences for disordered mesoscopic metals are discussed.

PACS numbers

72.10.Fk 72.15.-m 75.20.Hr 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. N. Bhatt and D. S. Fisher, Phys. Rev. Lett. 68, 3072 (1992); A. Langenfeld and P. Wölfle, Ann. Phys. (Leipzig) 4, 43 (1995).CrossRefADSGoogle Scholar
  2. 2.
    P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959); A. A. Abrikosov and L. P. Gorkov, Sov. Phys. JETP 8, 1090 (1958).zbMATHCrossRefGoogle Scholar
  3. 3.
    A. D. Mirlin, Phys. Rep. 326, 259 (2000).MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    W. B. Thimm, J. Kroha, and J. von Delft, Phys. Rev. Lett. 82, 2143 (1999); I. Affleck and P. Simon, Phys. Rev. Lett. 86, 2854 (2001); P. Simon and I. Affleck, Phys. Rev. B 64, 085308 (2001); S. Suga and T. Ohashi, J. Phys. Soc. Jpn. 72 (Suppl. A), 139 (2003); T. Ohashi and S. Suga, J. Phys. Soc. Jpn. 71 (Suppl. A), 1246 (2002).CrossRefADSGoogle Scholar
  5. 5.
    S. Kettemann and M. E. Raikh, Phys. Rev. Lett. 90, 146601 (2003).Google Scholar
  6. 6.
    B. L. Altshuler and B. I. Shklovskii, Zh. Éksp. Theor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)].Google Scholar
  7. 7.
    A. G. Aronov, V. E. Kravtsov, and I. V. Lerner, Phys. Rev. Lett. 74, 1174 (1995).CrossRefADSGoogle Scholar
  8. 8.
    P. W. Anderson, Phys. Rev. 124, 41 (1961); P. W. Anderson, G. Yuval, and D. R. Hamann, Phys. Rev. B 1, 4464 (1970).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Y. Nagaoka, Phys. Rev. 138, 1112 (1965); P. Fulde, Electron Correlations in Molecules and Solids, 2nd ed. (Springer, Berlin, 1993).CrossRefADSGoogle Scholar
  10. 10.
    K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).CrossRefADSGoogle Scholar
  11. 11.
    P. Nozières, J. Low Temp. Phys. 17, 3 (1974).CrossRefGoogle Scholar
  12. 12.
    R. K. Kaul, D. Ullmo, and H. U. Baranger, Phys. Rev. B 68, 161305(R) (2003); R. K. Kaul, D. Ullmo, S. Chandrasekharan, and H. U. Baranger, Europhys. Lett. 71, 973 (2005); Jaebeom Yoo, Shailesh Chandrasekharan, Ribhu K. Kaul, et al., Phys. Rev. B 71, 201309(R) (2005).Google Scholar
  13. 13.
    K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge Univ. Press, Cambridge, 1997).Google Scholar
  14. 14.
    S. Kettemann and E. R. Mucciolo (unpublished).Google Scholar
  15. 15.
    S. Kettemann, in Quantum Information and Decoherence in Nanosystems, Ed. by D. C. Glattli, M. Sanquer, and J. Tran Thanh Van (Gioi, La Truile, Italy, 2004), p. 259.Google Scholar
  16. 16.
    C. H. Lewenkopf and H. A. Weidenmüller, Phys. Rev. B 71, 121309(R) (2005).Google Scholar
  17. 17.
    G. Zarand and L. Udvardi, Phys. Rev. B 54, 7606 (1996).CrossRefADSGoogle Scholar
  18. 18.
    S. Chakravarty and C. Nayak, Int. J. Mod. Phys. B 14, 1421 (2000).CrossRefADSGoogle Scholar
  19. 19.
    V. Dobrosavljević, T. R. Kirkpatrick, and G. Kotliar, Phys. Rev. Lett. 69, 1113 (1992).CrossRefADSGoogle Scholar
  20. 20.
    S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).CrossRefADSGoogle Scholar
  21. 21.
    G. Bergmann, Phys. Rev. Lett. 58, 1236 (1987); R. P. Peters, G. Bergmann, and R. M. Mueller, Phys. Rev. Lett. 58, 1964 (1987); C. Van Haesendonck, J. Vranken, and Y. Bruynseraede, Phys. Rev. Lett. 58, 1968 (1987); P. Mohanty and R. A. Webb, Phys. Rev. Lett. 84, 4481 (2000); F. Schopfer, C. Bauerle, W. Rabaud, and L. Saminadayar, Phys. Rev. Lett. 90, 056801 (2003).CrossRefADSGoogle Scholar
  22. 22.
    G. Zaránd, L. Borda, J. von Delft, and N. Andrei, Phys. Rev. Lett. 93, 107204 (2004).Google Scholar
  23. 23.
    C. Bäuerle, F. Mallet, F. Schopfer, et al., Phys. Rev. Lett. 95, 266805 (2005).Google Scholar
  24. 24.
    E. Miranda and V. Dobrosavljević, Phys. Rev. Lett. 86, 264 (2001); M. C. O. Aguiar, E. Miranda, and V. Dobrosavljević, Phys. Rev. B 68, 125104 (2003).CrossRefADSGoogle Scholar
  25. 25.
    T. Micklitz, A. Altland, T. A. Costi, and A. Rosch, Preprint, cond-mat/0509583.Google Scholar
  26. 26.
    P. S. Cornaglia, D. R. Grempel, and C. A. Balseiro, cond-mat/0601537.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. Kettemann
    • 1
    • 2
  • E. R. Mucciolo
    • 3
  1. 1.Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Max-Planck Institute for Physics of Complex SystemsDresdenGermany
  3. 3.Department of PhysicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations