Universal temperature dependence of the conductivity of a strongly disordered granular metal

  • A. R. Akhmerov
  • A. S. Ioselevich


A disordered array of metal grains with large and random intergrain conductances is studied within the one-loop accuracy renormalization group approach. While, at low level of disorder, the dependence of conductivity on logT is nonuniversal (it depends on the details of the array’s geometry), for strong disorder, this dependence is described by a universal nonlinear function, which depends only on the array’s dimensionality. This function is found numerically in two dimensions. The dimensional crossover in granular films is discussed.

PACS numbers

72.80.Tm 73.50.-h 73.63.-b 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Chui, G. Deutscher, P. Lindenfeld, and W. L. McLean, Phys. Rev. B 23, 6172 (1981).CrossRefADSGoogle Scholar
  2. 2.
    R. W. Simon, B. J. Dalrymple, D. Van Vechten, et al., Phys. Rev. B 36, 1962 (1987).CrossRefADSGoogle Scholar
  3. 3.
    A. Gerber, A. Milner, G. Deutscher, et al., Phys. Rev. Lett. 78, 4277 (1997).CrossRefADSGoogle Scholar
  4. 4.
    K. B. Efetov and A. Tschersich, Europhys. Lett. B 59, 114 (2002); Phys. Rev. B 67, 174205 (2003).CrossRefADSGoogle Scholar
  5. 5.
    I. S. Beloborodov, K. B. Efetov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. Lett. 91, 246801 (2003).Google Scholar
  6. 6.
    A. Altland, L. I. Glazman, and A. Kamenev, Phys. Rev. Lett. 92, 026801 (2004).Google Scholar
  7. 7.
    J. S. Meyer, A. Kamenev, and L. I. Glazman, Phys. Rev. B 70, 045310 (2004).Google Scholar
  8. 8.
    M. V. Feigelman, A. S. Ioselevich, and M. A. Skvortsov, Phys. Rev. Lett. 93, 136403 (2004).Google Scholar
  9. 9.
    J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).Google Scholar
  10. 10.
    M. V. Feigelman and A. S. Ioselevich, JETP Lett. 81, 277 (2005).CrossRefADSGoogle Scholar
  11. 11.
    V. I. Kozub, V. M. Kozhevin, D. A. Yavsin, and S. A. Gurevich, JETP Lett. 81, 226 (2005).CrossRefADSGoogle Scholar
  12. 12.
    I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. B 72, 125121 (2005).Google Scholar
  13. 13.
    T. B. Tran, I. S. Beloborodov, X. M. Lin, et al., Phys. Rev. Lett. 95, 076806 (2005).Google Scholar
  14. 14.
    V. A. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745 (1982).CrossRefADSGoogle Scholar
  15. 15.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).CrossRefADSGoogle Scholar
  16. 16.
    B. I. Shklovskiĭ and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, Berlin, 1984).Google Scholar
  17. 17.
    A. Bunde and S. Havlin, in Fractals and Disordered Systems, Ed. by A. Bunde and S. Havlin (Springer, Berlin, 1996).Google Scholar
  18. 18.
    B. I. Shklovskii, Phys. Lett. A 51A, 289 (1975).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. R. Akhmerov
    • 1
  • A. S. Ioselevich
    • 1
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations