On scaling fields in ZN Ising models

  • V. A. Fateev
  • V. V. Postnikov
  • Y. P. Pugai
Methods of Theoretical Physics

Abstract

We study the space of scaling fields in the ZN symmetric models with factorized scattering and propose the simplest algebraic relations between the form factors induced by the action of deformed parafermionic currents. The construction gives a new free field representation for form factors of perturbed Virasoro algebra primary fields, which are parafermionic algebra descendants. We find exact vacuum expectation values of physically important fields and study the correlation functions of order and disorder fields in the form factor and conformal field theories perturbation approaches.

PACS numbers

74.50.+r 74.80.Fp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, et al., Nucl. Phys. B 241, 333 (1984).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B 240, 312 (1984); Nucl. Phys. B 251, 691 (1985).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    A. B. Zamolodchikov and V. A. Fateev, Sov. Phys. JETP 62, 215 (1985).MathSciNetGoogle Scholar
  4. 4.
    A. B. Zamolodchikov, Adv. Stud. Pure Math. 19, 641 (1989).MATHMathSciNetGoogle Scholar
  5. 5.
    M. Karowski and P. Weisz, Nucl. Phys. B 139, 455 (1978).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory (World Sci., Singapore, 1992).Google Scholar
  7. 7.
    J. L. Cardy and G. Mussardo, Nucl. Phys. B 340, 387 (1990); A. Koubek, Nucl. Phys. B 428, 655 (1994); M. Jimbo, T. Miwa, Y. Takeyama, et al., mathph/0303059.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    G. Delfino and G. Niccoli, Nucl. Phys. B 707, 381 (2005), hep-th/0501173; V. A. Belavin and O. V. Miroshnichenko, hep-th/0511128.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    R. Koberle and J. A. Swieca, Phys. Lett. B 86B, 209 (1979).ADSGoogle Scholar
  10. 10.
    V. A. Fateev, Int. J. Mod. Phys. A 6, 2109 (1991).ADSMathSciNetGoogle Scholar
  11. 11.
    S. Lukyanov, Commun. Math. Phys. 167, 183 (1995); Mod. Phys. Lett. A 12, 2543 (1997); Phys. Lett. B 408, 192 (1997).CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    S. Lukyanov and Y. Pugai, JETP 82, 1021 (1996); Nucl. Phys. B 473, 631 (1996).ADSGoogle Scholar
  13. 13.
    F. A. Smirnov, Commun. Math. Phys. 132, 415 (1990); A. N. Kirillov and F. A. Smirnov, Preprint ITF-88-73R (Kiev, 1988).CrossRefADSMATHGoogle Scholar
  14. 14.
    M. Jimbo, H. Konno, S. Odake, et al., J. Stat. Phys. 102, 883 (2001).CrossRefMathSciNetGoogle Scholar
  15. 15.
    G. E. Andrews, R. J. Baxter, and P. J. Forrester, J. Stat. Phys. 35, 193 (1984).CrossRefMathSciNetGoogle Scholar
  16. 16.
    Al. B. Zamolodchikov, Nucl. Phys. B 348, 619 (1991).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Y. Pugai, JETP Lett. 79, 457 (2004).CrossRefGoogle Scholar
  18. 18.
    V. A. Fateev, Phys. Lett. B 324, 45 (1994).ADSMathSciNetGoogle Scholar
  19. 19.
    S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B 493, 571 (1997); V. A. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Nucl. Phys. B 516, 652 (1998).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    V. A. Fateev, hep-th/0103014.Google Scholar
  21. 21.
    V. A. Fateev, Mod. Phys. Lett. A 15, 259 (2000).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    V. Fateev, D. Fradkin, S. Lukyanov, et al., Nucl. Phys. B 540, 587 (1999).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    M. Casselle, G. Delfino, P. Grinza, et al., hep-th/051168.Google Scholar
  24. 24.
    H. Babujian, A. Foerster, and M. Karowski, hep-th/0510062.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. A. Fateev
    • 1
    • 2
  • V. V. Postnikov
    • 3
  • Y. P. Pugai
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Laboratoire de Physique Théorique et AstroparticulesUniversité Montpellier IIMontpellierFrance
  3. 3.Sochi BranchPeoples’ Friendship UniversitySochiRussia

Personalised recommendations