Advertisement

JETP Letters

, Volume 83, Issue 2, pp 83–86 | Cite as

Dephasing of Josephson qubits close to optimal points

  • S. V. Syzranov
  • Yu. Makhlin
Article
  • 23 Downloads

Abstract

Decoherence of Josephson qubits can be substantially reduced by tuning their parameters to optimal operation points with only quadratic coupling to fluctuations. We analyze dephasing due to 1/f noise for a two-level system detuned from an optimal point, i.e., the crossover to the linear-coupling regime, both for free induction decay and for spin-echo experiments. Influence of several noise sources is also discussed.

PACS numbers

03.65.Yz 03.67.Pp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Esteve and D. Vion, in Nanophysics: Coherence and Transport, Ed. by H. Bouchiat et al. (Elsevier, Amsterdam, 2005), p. 537.Google Scholar
  2. 2.
    M. H. Devoret and J. M. Martinis, Quant. Inf. Proc. 3, 163 (2004).zbMATHCrossRefGoogle Scholar
  3. 3.
    G. Ithier, E. Collin, P. Joyez, et al., Phys. Rev. B 72, 134519 (2005).Google Scholar
  4. 4.
    J. M. Martinis, K. B. Cooper, R. McDermott, et al., condmat/0507622.Google Scholar
  5. 5.
    P. Bertet, I. Chiorescu, G. Burkard, et al., condmat/0412485.Google Scholar
  6. 6.
    D. Vion, A. Aassime, A. Cottet, et al., Science 296, 886 (2002).CrossRefADSGoogle Scholar
  7. 7.
    Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).CrossRefADSGoogle Scholar
  8. 8.
    R. Aguado and L. P. Kouwenhoven, Phys. Rev. Lett. 84, 1986 (2000).CrossRefADSGoogle Scholar
  9. 9.
    R. S. Schoelkopf, A. A. Clerk, S. M. Girvin, et al., in Quantum Noise in Mesoscopic Systems, Ed. by Yu. V. Nazarov (Kluwer, Dordrecht, 2002), p. 175.Google Scholar
  10. 10.
    O. Astafiev, Yu. A. Pashkin, Y. Nakamura, et al., Phys. Rev. Lett. 93, 267007 (2004).Google Scholar
  11. 11.
    P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).CrossRefADSGoogle Scholar
  12. 12.
    E. Paladino, L. Faoro, G. Falci, and R. Fazio, Phys. Rev. Lett. 88, 228304 (2002).Google Scholar
  13. 13.
    Y. M. Galperin, B. L. Altshuler, and D. V. Shantsev, in Fundamental Problems of Mesoscopic Physics, Ed. by I. V. Lerner et al. (Kluwer, Dordrecht, 2004), p. 141.CrossRefGoogle Scholar
  14. 14.
    Yu. Makhlin and A. Shnirman, Phys. Rev. Lett. 92, 178301 (2004).Google Scholar
  15. 15.
    J. Schriefl, PhD Thesis (ENS Lyon/Univ. Karlsruhe, 2005).Google Scholar
  16. 16.
    K. Rabenstein, V. A. Sverdlov, and D. V. Averin, JETP Lett. 79, 783 (2004).CrossRefGoogle Scholar
  17. 17.
    Yu. Makhlin and A. Shnirman, JETP Lett. 78, 497 (2003).CrossRefADSGoogle Scholar
  18. 18.
    J. E. Mooij, T. P. Orlando, L. Levitov, et al., Science 285, 1036 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. V. Syzranov
    • 1
    • 2
  • Yu. Makhlin
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyĭ, Moscow regionRussia

Personalised recommendations