JETP Letters

, Volume 83, Issue 2, pp 64–68 | Cite as

Features of magneto-optical resonances in an elliptically polarized traveling light wave

  • D. V. Brazhnikov
  • A. V. Taĭchenachev
  • A. M. Tumaĭkin
  • V. I. Yudin
  • S. A. Zibrov
  • Ya. O. Dudin
  • V. V. Vasil’ev
  • V. L. Velichansky
Article

Abstract

The parameters of nonlinear absorption magneto-optical resonances in the Hanle configuration have been studied as functions of the ellipticity of a traveling light wave. It has been found that these parameters (amplitude, width, and amplitude-to-width ratio) depend strongly on the polarization of the light wave. In particular, the resonance amplitude can increase by more than an order of magnitude when the polarization changes from linear to optimal elliptic. It has been shown that this effect is associated with the Doppler frequency shift for atoms in a gas. The theoretical results have been corroborated in experiments in Rb vapor.

PACS numbers

33.55.Fi 42.50.Gy 42.62.Fi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Stahler, R. Wynands, S. Knappe, et al., Opt. Lett. 27, 1472 (2002).Google Scholar
  2. 2.
    A. Akulshin, A. Celikov, and V. Velichansky, Opt. Commun. 84, 139 (1991).CrossRefADSGoogle Scholar
  3. 3.
    J. Vanier, Appl. Phys. B 81, 421 (2005).CrossRefADSGoogle Scholar
  4. 4.
    A. Aspect, E. Arimondo, R. Kaiser, et al., Phys. Rev. Lett. 61, 826 (1988).CrossRefADSGoogle Scholar
  5. 5.
    E. Arimondo, in Progress in Optics, Ed. by E. Wolf (Elsevier, Amsterdam, 1996), Vol. 35, p. 257.Google Scholar
  6. 6.
    B. D. Agap’ev, M. B. Gornyĭ, B. G. Matisov, and Yu. V. Rozhdestvenskiĭ, Usp. Fiz. Nauk 163(9), 35 (1993) [Phys. Usp. 36, 763 (1993)].Google Scholar
  7. 7.
    A. M. Akulshin, S. Barreiro, and A. Lezama, Phys. Rev. A 57, 2996 (1998).CrossRefADSGoogle Scholar
  8. 8.
    F. Renzoni, S. Cartaleva, G. Alzetta, and E. Arimondo, Phys. Rev. A 63, 065401 (2001).Google Scholar
  9. 9.
    A. V. Taĭchenachev, A. M. Tumaĭkin, and V. I. Yudin, Pis’ma Zh. Éksp. Teor. Fiz. 69, 776 (1999) [JETP Lett. 69, 819 (1999)].Google Scholar
  10. 10.
    A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 61, 011802(R) (2000).Google Scholar
  11. 11.
    D. V. Brazhnikov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, J. Opt. Soc. Am. B 22, 57 (2005).CrossRefADSGoogle Scholar
  12. 12.
    Y. Dancheva, G. Alzetta, S. Cartaleva, et al., Opt. Commun. 178, 103 (2000).CrossRefADSGoogle Scholar
  13. 13.
    F. Renzoni, C. Zimmermann, P. Verkerk, and E. Arimondo, J. Opt. B: Quantum Semiclassic. Opt. 3, S7 (2001).CrossRefADSGoogle Scholar
  14. 14.
    A. V. Yarovitskiĭ, O. N. Prudnikov, V. V. Vasil’ev, et al., Kvantovaya Élektron. (Moscow) 34, 341 (2004).CrossRefGoogle Scholar
  15. 15.
    A. V. Taĭchenachev, A. M. Tumaĭkin, and V. I. Yudin, Pis’ma Zh. Éksp. Teor. Fiz. 72, 173 (2000) [JETP Lett. 72, 119 (2000)].Google Scholar
  16. 16.
    D. V. Brazhnikov, A. V. Taichenachev, A. M. Tumaikin, et al., in Technical Digest of ICONO/LAT-2005 (St. Petersburg, 2005), IFM19, Proc. SPIE (in press).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • D. V. Brazhnikov
    • 1
    • 2
  • A. V. Taĭchenachev
    • 1
    • 3
  • A. M. Tumaĭkin
    • 1
  • V. I. Yudin
    • 1
    • 2
  • S. A. Zibrov
    • 4
    • 5
  • Ya. O. Dudin
    • 4
    • 5
  • V. V. Vasil’ev
    • 4
  • V. L. Velichansky
    • 4
  1. 1.Institute of Laser Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  5. 5.Moscow Engineering Physics Institute (State University)MoscowRussia

Personalised recommendations