Advertisement

Instruments and Experimental Techniques

, Volume 61, Issue 6, pp 796–803 | Cite as

The Measuring System for the Thomson Scattering Diagnostics of the GOL-3 and GDT Facilities

  • E. A. Puryga
  • A. D. Khilchenko
  • A. N. Kvashnin
  • P. V. Zubarev
  • V. V. Prikhodko
  • S. V. Ivanenko
  • D. V. Moiseev
  • A. A. Kasatov
  • V. V. Maksimov
  • L. N. Vyacheslavov
APPLICATION OF COMPUTERS IN EXPERIMENTS
  • 5 Downloads

Abstract

The measuring system for Thomson scattering diagnostics of the GOL-3 and GDT facilities at the Budker Institute of Nuclear Physics is described. The system has a modular architecture and is based on eight-channel measuring subsystems, including photodetectors, two-channel recorders (ADC12500), synchronization modules, and the Ethernet/UART communication channel adapter. The photodetectors are based on avalanche photodiodes and are operable in the frequency range of 0–50 MHz. The ADC12500 recorders are used to measure scattering signals with a duration of ~20–30 ns at a sampling rate of to 500 MHz and an amplitude resolution of 12 bits and accumulate data in a buffer memory with a capacity as large as 2 MB.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 16-37-00204) and the Russian Science Foundation (grant no. 17-79-10200).

REFERENCES

  1. 1.
    Kuznetsov, E.I. and Shcheglov, D.A., Metody diagnostiki vysokotemperaturnoi plazmy (Methods for Diagnosing High-Temperature Plasmas), Moscow: Atomizdat, 1974.Google Scholar
  2. 2.
    Luk’yanov, S.Yu. and Koval’skii, N.G., Goryachaya plazma i upravlyaemyi yadernyi sintez (High-Temperature Plasma and Controlled Nuclear Fusion), Moscow: Moscow Engineering Physics Institute, 1997.Google Scholar
  3. 3.
    http://budker.ru/ru/Infrasructure/Ustanovki/GOL-3/.Google Scholar
  4. 4.
    http://budker.ru/ru/Infrasructure/Ustanovki/GDL/.Google Scholar
  5. 5.
    Polosatkin, S.V., Burdakov, A.V., Ivantsivskii, M.V., Koidan, V.S., Ovchar, V.K., Rovenskikh, A.F., Semionov, V.V., and Fedotov, M.G., Plasma Phys. Rep., 2006, vol. 32, no. 2, p. 108.ADSCrossRefGoogle Scholar
  6. 6.
    Dvornikov, O.V., Chekhovskii, V.A., and Dyatlov, V.L., Prib. Metody Izmer., 2012, no. 2 (5), p. 5.Google Scholar
  7. 7.
    Ramus, X., Transimpedance Considerations for High-Speed Amplifiers, Application Report SBOA122, Texas Instruments, 2009.Google Scholar
  8. 8.
    Datasheet Optoelectronics C30659E-900-1060-1550 nm Series. http://www.perkinelmer.com/optoelectronics.Google Scholar
  9. 9.
    Puryga, E.A., Khilchenko, A.D., Ivanova, A.A., Kvashnin, A.N., Zubarev, P.V., and Ivanenko, S.V., Instrum. Exp. Tech., 2012, vol.55, no. 3, p. 368. doi 10.1134/S0020441212020170CrossRefGoogle Scholar
  10. 10.
    Puryga, E.A., Khilchenko, A.D., Kvashnin, A.N., Zubarev, P.V., Ivanova, A.A., and Ivanenko, S.V., Proc. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC),Anaheim, CA, 2012, p. 1052.Google Scholar
  11. 11.
    Puryga, E.A., Sulyaev, Yu.S., Khilchenko, A.D., Kvashnin, A.N., Polosatkin, S.V., Rovenskikh, A.F., Burdakov, A.V., and Grishnyaev, E.S., Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, vol. 720, p. 23.Google Scholar
  12. 12.
    Martin, K., Puryga, E.A., Ivanenko, S.V., Ivanova, A.A., Kotelnikov, A.I., Zubarev, P.V., Kvashnin, A.N., and Khilchenko, A.D., Proc. 3rd Int. Conference on Technology and Instrumentation in Particle Physics (TIPP 2014), Amsterdam, June 2–6, 2014, p. 416. http:/pos:sisa.it/ 213/416/pdf.Google Scholar
  13. 13.
    Ivanova, A.A., Zubarev, P.V., Ivanenko, S.V., Kvashnin, A.N., Kotelnikov, A.I., Moiseev, D.V., Puryga, E.A., Khilchenko, A.D., Khil’chenko, V.A., and Shvyrev, V.G., Instrum. Exp. Tech., 2016, vol. 59, no. 3, p. 344. doi 10.1134/S0020441216020329CrossRefGoogle Scholar
  14. 14.
    Stepanov, D.N., Shukaev, A.N., Bagryanskii, P.A., Lizunov, A.A., and Anikeev, A.V., Instrum. Exp. Tech., 2004, vol. 47, no. 2, p. 174. doi 10.1023/B:INET. 0000025197.76851.52CrossRefGoogle Scholar
  15. 15.
    https://root.cern.ch.Google Scholar
  16. 16.
    Bagryansky, P.A., Shalashov, A.G., Gospodchikov, E.D., Lizunov, A.A., Maximov, V.V., Prikhodko, V.V., Soldatkina, E.I., Solomakhin, A.L., and Yakovlev, D.V., Phys. Rev. Lett., 2015, vol. 114, p. 205001. doi 10.1103/ PhysRevLett.114.205001ADSCrossRefGoogle Scholar
  17. 17.
    Ivanenko, S.V., Khilchenko, A.D., Puryga, E.A., Ovchar, V.K., Zubarev, P.V., Kvashnin, A.N., Ivanova, A.A., and Kotelnikov, A.I., IEEE Trans. Nucl. Sci., 2015, vol. 62, no. 3, p. 1181. doi 10.1109/TNS.2015.2428195ADSCrossRefGoogle Scholar
  18. 18.
    Puryga, E.A., Ivanenko, S.V., Kvashnin, A.N., Khilchenko, A.D., Zubarev, P.V., and Moiseev, D.V., Proc. 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), Strasbourg, 2016. https://ieeexplore.ieee.org/document/ 8069664/. doi 10.1109/NSSMIC.2016.8069664Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Puryga
    • 1
  • A. D. Khilchenko
    • 1
  • A. N. Kvashnin
    • 1
  • P. V. Zubarev
    • 1
    • 2
  • V. V. Prikhodko
    • 1
    • 3
  • S. V. Ivanenko
    • 1
    • 2
  • D. V. Moiseev
    • 1
  • A. A. Kasatov
    • 1
    • 3
  • V. V. Maksimov
    • 1
    • 3
  • L. N. Vyacheslavov
    • 1
    • 3
  1. 1.Budker Institute of Nuclear Physics, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations