Instruments and Experimental Techniques

, Volume 61, Issue 6, pp 849–855 | Cite as

An Automated System for Measuring the Current Density of a Pulse–Periodic Electron Beam with a Large Cross Section

  • M. S. Vorobyov
  • S. S. Kovalsky
  • N. N. Koval

Abstract—In an electron source with a mesh plasma cathode on the basis of a low-pressure arc discharge, studies of the spatiotemporal stability of a pulse–periodic beam with a large cross section (750 × 150 mm2), which was extracted into the atmosphere through an output foil window, were performed. The automated system that was used in the studies allowed real-time measurements with the ability to visualize the data on a computer. This system provides an accuracy of measurements of no worse than ±2%; it differs from the known analogues in the compactness, reliability, and simplicity of its design and allows studies of the current-density distribution over the beam cross section in a wide range of beam parameters, such as the beam energy, beam current, and beam-current pulse duration. A satisfactory coincidence of the previously obtained data and the present experimental data is shown with the possibility of substantially increasing the accuracy of setting up a scientific experiment and, consequently, the speed of debugging and the reproducibility of the technological process.



  1. 1.
    Bugaev, S.P., Kreindel’, Yu.E., and Shchanin, P.M., Elektronnye puchki bol’shogo secheniya (Electron Beams with Large Cross-Section), Moscow: Energoatomizdat, 1984.Google Scholar
  2. 2.
    Abdullin, E.N. and Chmukh, V.N., Khim. Vys. Energ., 1979, vol. 13, no. 2, p. 181.Google Scholar
  3. 3.
    Henze, M., Harremoes, P., Jansen, J.C., and Arvin, E., Wastewater Treatment. Biological and Chemical Processes, Berlin, Heidelberg: Springer, 2002.Google Scholar
  4. 4.
    Pushkarev, A.I., Remnev, G.E., Vlasov, V.A., Sosnovskii, S.A., and Ezhov, V.V., Izv. Tomsk. Politekh. Univ., 2004, vol. 307, no. 6, p. 59.Google Scholar
  5. 5.
    Rostov, V.V., Alekseenko, P.I., Vykhodtsev, P.V., Shteinle, A.V., Mazin, V.I., Krasnozhenov, E.P., Mushtovatova, L.S., Solodkova, T.V., Postnikov, P.S., Kutonova, K.V., and Shteinle, L.A., Sib. Med. Zh., 2012, vol. 27, no. 1, p. 141.Google Scholar
  6. 6.
    Abroyan, M.A., Akulov, V.V., Bogomazov, P.M., Kosogorov, S.L., Manukyan, G.Sh., Motovilov, S.A., Shvedyuk, V.Ya., and Shapiro, V.B., Kvantovaya Elektron., 1996, vol. 23, no. 8, p. 751.Google Scholar
  7. 7.
    Sokovnin, S.Yu., Nanosekundnye uskoriteli elektronov i radiatsionnye tekhnologii na ikh osnove (Nanosecond Electron Accelerators and Radiation Technologies on Their Base), Yekaterinburg: Ural Branch Russ. Acad. Sci., 2007.Google Scholar
  8. 8.
    Ershov, B.G., Herald Russ. Acad. Sci., 2013, vol. 83, no. 5, p. 437. doi 10.1134/S1019331613090050CrossRefGoogle Scholar
  9. 9.
    Abroyan, M.A., Kosogorov, S.L., Nabokova, I.V., Uspenskii, N.A., Chumichev, V.A., Shapiro, V.B., and Shvedyuk, V.Ya., Instrum. Exp. Tech., 2007, vol. 50, no. 4, p. 530. doi 10.1134/S0020441207040173CrossRefGoogle Scholar
  10. 10.
    Kondrat’ev, E.A., Pis’mennyi, V.D., Rakhimov, A.G., and Saenko, V.B., Materialy 3-ego Vsesoyuznogo soveshchaniya “Primenenie uskoritelei zaryazhennykh chastits v narodnom khozyaistve” (Proc. 3rd All-Union Conf. “Application of Charge Particle Accelerators for National Economy”), Leningrad, 1979, vol. 3, p. 203.Google Scholar
  11. 11.
    Koval, N.N. and Ovsyannikov, V.I., Materialy regional’noi nauchno-prakticheskoi konferentsii “Molodye uchenye i spetsialisty – narodnomu khozyaistvu” (Proc. Regional Scientific and Practical Conf. “Young Scientists and Specialists for National Economy”), Tomsk, 1977, p. 32.Google Scholar
  12. 12.
    Kochenkov, V.A., Mikhailov, V.I., Naek, S.V., Porkhun, A.I., Skorobogat, S.L., and Slivkov, I.N., Prib. Tekh. Eksp., 1977, no. 2, p. 139.Google Scholar
  13. 13.
    Ponomarev, A.V., Pedos, M.S., Mamontov, U.I., Gusev, A.I., and Shcherbinin, S.V., Instrum. Exp. Tech., 2015, vol. 58, no. 4, p. 499. doi 10.1134/ S0020441215030252CrossRefGoogle Scholar
  14. 14.
    Vorobyov, M.S., Koval, N.N., and Sulakshin, S.A., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 687. doi 10.1134/S0020441215040132CrossRefGoogle Scholar
  15. 15.
    Gielkens, S.W.A., Peters, P.J.M., Witteman, W.J., Borovikov, P.V., Stepanov, A.V., Tskhai, V.N., Zavjalov, M.A., Gushenets, V.I., and Koval, N.N., Rev. Sci. Instrum., 1996, vol. 67, no. 7, p. 2449. doi 10.1063/1.1147195ADSCrossRefGoogle Scholar
  16. 16.
    Schanin, P.M., Koval, N.N., Tolkachev, V.S., and Gushenets, V.I., Russ. Phys. J., 2000, vol. 43, no. 5, p. 427.CrossRefGoogle Scholar
  17. 17.
    Koval, N.N., Kreindel, Yu.E., Tolkachev, V.S., and Schanin, P.M., IEEE Trans. Electr. Insul., 1985, vol. EI-20, no. 4, p. 735. doi 10.1109/TEI.1985.348898CrossRefGoogle Scholar
  18. 18.
    Vorobyov, M.S. and Koval, N.N., Tech. Phys. Lett., 2016, vol. 42, no. 6, p. 574.ADSCrossRefGoogle Scholar
  19. 19.
    Vorobyov, M.S., Koval, N.N., Sulakshin, S.A., and Shugurov, V.V., J. Phys.: Conf. Ser., 2015, vol. 652, p. 012048. doi 10.1088/1742-6596/652/1/012048Google Scholar
  20. 20.
    Archard, G.D., J. Appl. Phys., 1961, vol. 32, no. 8, p. 1505. doi 10.1063/1.1728385ADSCrossRefGoogle Scholar
  21. 21.
    Seltser, S.M. and Berger, M.J., Nucl. Instrum. Methods, 1974, vol. 119, p. 157. doi 10.1016/0029-554X(74) 90747-2ADSCrossRefGoogle Scholar
  22. 22.
    Grigor’ev, Yu.V. and Shanturin, L.P., Prib. Tekh. Eksp., 1979, no. 4, p. 194.Google Scholar
  23. 23.
    Kozyrev, A.V., Kozhevnikov, V.Yu., Vorobyov, M.S., Baksht, E.Kh., Burachenko, A.G., Koval, N.N., and Tarasenko, V.F., Laser Part. Beams, 2015, vol. 33, no. 02, p. 183. doi 10.1017/S0263034615000324ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. S. Vorobyov
    • 1
  • S. S. Kovalsky
    • 1
  • N. N. Koval
    • 1
  1. 1.Institute of High Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations