Advertisement

Instruments and Experimental Techniques

, Volume 61, Issue 6, pp 842–848 | Cite as

A Scanning SXR Spectrometer Used in Experiments on ECR Plasma Heating at the L-2M Stellarator

  • A. I. Meshcheryakov
  • I. Yu. Vafin
  • I. A. Grishina
GENERAL EXPERIMENTAL TECHNIQUES

Abstract—A diagnostic complex that is based on a scanning soft X-ray spectrometer has been developed at the Prokhorov General Physics Institute. The diagnostic complex is intended to measure the radial profiles of the plasma electron temperature in the L-2M stellarator. The maximum counting rate of the spectrometer is 2.0 × 105 pulses/s. It allows measuring of SXR spectra in the energy range of γ-photons of 1–80 keV. The spectral resolution of the spectrometer measured using a source of radioactive radiation with energy of E = 5.89 keV (55Fe) was ΔE = 320 eV (FWHM). The scanning system makes it possible to measure SXR spectra along the chords lying in the angular range from –13.5° to +26.5°. Negative and positive angles correspond to chords below and above the equatorial plane of the facility, respectively. The radial resolution of the spectrometer at the plasma axis is ~1.7 cm. The first results of spectral measurements in experiments at electron cyclotron resonance plasma heating at the L-2M stellarator are presented.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-02-00609.

REFERENCES

  1. 1.
    Meshcheryakov, A.I., Vafin, I.Yu., Grishina, I.A., Letunov, A.A., and Tereshchenko, M.A., Plasma Phys. Rep., 2017, vol. 43, no. 6, pp. 599–604. doi 10.1134/ S1063780X17060113ADSCrossRefGoogle Scholar
  2. 2.
    Esipchuk, Yu.V., Kirneva, N.A., Martynov, A.A., and Trukhin, V.M., Plasma Phys. Rep.,1995, vol. 21, no. 7.Google Scholar
  3. 3.
    Blanchard, P., Alberti, S., Coda, S., Weisen, H., Nikkola, P., and Klimanov, I., Plasma Phys. Control. Fusion, 2002, vol. 44, p. 231.CrossRefGoogle Scholar
  4. 4.
    https://physics.nist.gov/PhysRefData/XrayMassCoef /tab3.htmlGoogle Scholar
  5. 5.
    Meshcheryakov, A.I., Akulina, D.A., Vafin, I.Yu., Gladkov, G.A., and Grebenshchikov, S.E., Plasma Phys. Rep.,2006, vol. 32, no. 2, pp. 103–107.ADSCrossRefGoogle Scholar
  6. 6.
    Grebenshchikov, S.E., Vafin, I.Yu., Meshcheryakov, A.I., and Nechaev, Yu.I., Plasma Phys. Rep., 2008, vol. 34, no. 12, pp. 1016–1021. doi 10.1134/S1063780X08120040ADSCrossRefGoogle Scholar
  7. 7.
    Voronov, G.S., Batanov, G.M., Berezhetsky, M.S., Bondar, Yu.F., Borzosekov, V.D., Vaphin, I.Yu., Vasil’kov, D.G., Grebenshchikov, S.E., Grishina, I.A., Kolik, L.V., Konchekov, E.M., Larionova, N.F., Letunov, A.A., Logvinenko, V.P., Malakhov, D.V., et al., Plasma Phys. Rep.,2012, vol. 38, no. 9, pp. 708–717. doi 10.1134/S1063780X12090073ADSCrossRefGoogle Scholar
  8. 8.
    Meshcheryakov, A.I., Akulina, D.A., Batanov, G.M., Berezhetsky, M.S., Voronov, G.S., Gladkov, G.A., Grebenshchikov, S.E., Grinchuk, V.A., Grishina, I.A., Kolik, L.V., Larionova, N.F., Letunov, A.A., Logvinenko, V.P., Petrov, A.E., Pshenichnikov, A.A., Ryabenko, G.A., Sarksyan, K.A., Skvortsova, N.N., Fedyanin, O.I., Kharchev, N.K., Khol’nov, Yu.V., and Sharapov, V.M., Plasma Phys. Rep., 2005, vol. 31, no. 6, pp. 452–461.ADSCrossRefGoogle Scholar
  9. 9.
    Meshcheryakov, A.I., Grebenshchikov, S.E., Kuznetsov, A.B., Sbitnikova, I.S., Kharchev, N.K., and Shchepetov, S.V., J. Plasma Fusion Res. SER., 1998, vol. 1, p. 350.Google Scholar
  10. 10.
    Erckmann, V., Laqua, H.P., Maaßberg, H., Maru-shchenko, N.B., Rome, M., Volpe, F., Kasparek, W., and Müller, G.A., W7-AS Team, IAEA Publications, EX/ W-3. http://wwwpub.iaea.org/MTCD/publications/PDF/csp_019c/pdf/exw_3.pdf.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. I. Meshcheryakov
    • 1
  • I. Yu. Vafin
    • 1
  • I. A. Grishina
    • 1
  1. 1.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations