Advertisement

Instruments and Experimental Techniques

, Volume 59, Issue 5, pp 733–739 | Cite as

High-efficiency thermoluminescent detectors for measuring the absorbed ionizing radiation dose in the environment

  • N. L. Aluker
  • J. M. Suzdaltseva
  • M. Herrmann
  • A. C. Dulepova
Physical Instruments for Ecology, Medicine, and Biology

Abstract

A study has been conducted with the goal of comparing the characteristics of TLD-K detectors based on sodium silicate ceramics to the characteristics of monocrystalline lithium fluoride detectors that contain traces of titanium and magnesium (TLD-100), as well as anion-defected aluminum oxide (TLD-500), which are widely used in thermoluminescent dosimetry. Because they are soil-equivalent, SiO2 detectors are well suited for measuring the absorbed radiation dose in soils. The results of the comparison indicate that TLD-K detectors are preferable to LiF detectors in environmental applications due to the better uniformity of the detector sensitivity in a batch, the wider range of measurable doses, and the lower threshold in determining small doses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shvarts, K.K., Kristapson, Ya.Zh., Lusis, D.Yu., and Podin’, A.V., Lithium fluoride: Optical properties and application in thermoluminescent dosimetry, in Radiatsionnaya fizika. Vyp. 5 (Radiation Physics, No. 5), Riga: Zinatne, 1967, pp. 179–235.Google Scholar
  2. 2.
    Fominykh, V.I. and Oborin, F.V., Izotopy v SSSR, 1982, no. 1, p. 12.Google Scholar
  3. 3.
    Nepomnyashchikh, A.P., Radzhabov, E.L., and Egranov, A.V., Tsentry okraski i lyuminestsentsiya kristallov LiF (Color Centers and Luminescence of LiF Crystals), Novosibirsk: Nauka, 1984.Google Scholar
  4. 4.
    McKeever, S.W.S., Moscovitch, M., and Townsend, P.D., Thermoluminescence Dosimetry Materials: Properties and Uses, Ashford: Nuclear Technology, 1995.Google Scholar
  5. 5.
    Kortov, V.S., Mil’man, I.I., and Nikiforov, S.V., Fiz. Tverd. Tela, 1997, vol. 39, no. 9, p. 1369.Google Scholar
  6. 6.
    Bochvar, I.A., Gimadova, T.I., Keirim-Markus, I.B., Kushnerev, A.Ya., and Yakubik, V.V., Metod dozimetrii IKS (Method of IRSpectroscopy Dosimentry), Moscow: Atomizdat, 1977.Google Scholar
  7. 7.
    Aluker, N.L., Artamonov, A.S., Bakulin, Yu.P., Danilevich, E.N., Krysanova, O.L., Riskina, R.V., and Sogoyan, A.V., Vopr. At. Nauki Tekhn., Ser.: Fiz. Radiats. Vozd. Radioelektron. Apparat., 2006, nos. 3–4, p. 86.Google Scholar
  8. 8.
    Aluker, N. and Aluker, V., Proc. 10th Int. Conf. Solid State Dosimetry Ashford, Kent: Nucl. Technol., 1992, no. 7, p. 39.Google Scholar
  9. 9.
    Aluker, N.L. and Aluker, E.D., RF Patent 2108598, 1998. http://www.findpatent.ru/patent/210/2108598. htmlGoogle Scholar
  10. 10.
    Eger, R., Dozimetriya i zashchita ot izluchenii (fizicheskie i tekhnicheskie konstanty), (Dosimetry and Radiation Protection (Physical and Technical Constants), Moscow: Atomizdat, 1961.Google Scholar
  11. 11.
    Aluker, N.L. and Yagodina, E.V., Use of thermoluminescent detectors for study of distribution of absorbed doses at patient X-ray study conduction, in Sovremennye problemy khimicheskoi i radiatsionnoi fiziki (Contemporary Problems of Chemical and Radiation Physics), Moscow: Chernogolovka, 2009, pp. 299–303.Google Scholar
  12. 12.
    Shaver, I.Kh., Cand. Sci. (Phys.–Math.) Dissertation, Leningrad: SPb Gos. Univ., 1976.Google Scholar
  13. 13.
    Aksel’rod, M.S., Kortov, V.S., Mil’man, I.I., Gorelova, E.A., Borisov, A.A., Zatulovskii, L.M., Kraevetskii, D.Ya., Berezina, I.E., and Lebedev, N.K., Izv. Akad. Nauk SSSR, Ser. Fiz., 1988, vol. 52, no. 10, p. 1981.Google Scholar
  14. 14.
    Vakhidov, Sh.A., Gasanov, E.M., Samoilovich, M.I., and Yarkulov, U., Radiatsionnye effekty v kvartse (Radiation Effects in Quartz), Vakhidov, Sh.A., Ed., Tashkent: Fan, 1975.Google Scholar
  15. 15.
    Marfunin, A.S., Spektroskopiya, lyuminestsentsiya i radiatsionnye tsentry v mineralakh (Spectroscopy, Luminescence and Radiation Centers in Minerals), Moscow: Nedra, 1975.Google Scholar
  16. 16.
    Komarov., Ya.M., Aluker, N.L., Bobrov, V.V., and Sorokina, N.V., Inorg. Mater., 2011, vol. 47, no. 5, p. 544.CrossRefGoogle Scholar
  17. 17.
    Aluker, N.L., Suzdal’tseva, Ya.M., and Chernov, A.N., Geolog. Mineral.-syr’ev. Resursy Sibiri, 2014, no. 4, p. 29.Google Scholar
  18. 18.
    Aluker, N.L., Bobrov, Ya.M., and Suzdal’tseva, Ya.M., Inorg. Mater., 2015, vol. 51, no. 2, p. 182.CrossRefGoogle Scholar
  19. 19.
    Aluker, E.D., Kucheruk, E.V., and Petukhov, A.V., in Itogi nauki i tekhniki. Seriya Geokhimiya. Mineralogiya. Petrografiya (Resume of Science and Tech. Ser. Geochem., Mineral., Petrograph.), vol. 16, Moscow: VINITI, 1989.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • N. L. Aluker
    • 1
  • J. M. Suzdaltseva
    • 1
    • 2
  • M. Herrmann
    • 3
  • A. C. Dulepova
    • 1
  1. 1.Kemerovo State UniversityKemerovoRussia
  2. 2.Institute of Human Ecology, Siberian BranchRussian Academy of SciencesKemerovoRussia
  3. 3.Pennsylvania State University, Walker BuildingState CollegeUnited States

Personalised recommendations