Advertisement

Instruments and Experimental Techniques

, Volume 59, Issue 3, pp 483–486 | Cite as

Thermostatting of the RED-100 liquid-xenon emission detector

  • A. I. Bolozdynya
  • Yu. V. Efremenko
  • A. V. Sidorenko
  • V. V. Sosnovtsev
  • I. A. Tolstukhin
  • A. V. Shakirov
  • R. R. Shafigullin
  • A. V. Khromov
Laboratory Techniques
  • 34 Downloads

Abstract

The thermal stabilization system of the RED-100 liquid-xenon two-phase emission detector for the experiment aimed at detecting the effect of coherent neutrino scattering off xenon nuclei has been tested. The system is based on thermosyphons (closed two-phase heat pipes) that are filled with nitrogen and use liquid nitrogen boiling at atmospheric pressure as a cooler. The system is capable of keeping the working medium of the RED-100 detector at a temperature of 167 K with a precision of <1 K.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    RED collaboration, J. Instrum., 2013, vol. 8, no. 10, p. 10023. doi 10.1088/1748-0221/8/10/P10023Google Scholar
  2. 2.
    Akimov, D.Yu., Bolozdynya, A.I., Kavanna, F., Efremenko, Yu.V., Garvei, G.T., Gudkov, V., Khatsikutelis, A., Khiks, V.R., Luis, V.K., Link, Dzh.M., Markov, D.M., Mills, G.B., Paton, K., Rei, Kh., et al., O vozmozhnosti issledovaniya neitrino na uskoritel’nom istochnike tipa Spallation Neutron Source (On the Possibility of Investigating Neutrino on Acceleration Source of Spallation Neutron Source Type), Moscow: NRNU MEPhI, 2013.Google Scholar
  3. 3.
    Akimov, D.Yu., Aleksandrov, I.S., Belov, V.A., Bolozdynya, A.I., Burenkov, A.A., Efremenko, Yu.V., Kirsanov, M.A., Kobyakin, A.S., Kovalenko, A.G., Konovalov, A.M., Kumpan, A.V., and Stekhanov, V.N., Instrum. Exp. Tech., 2012, vol. 55, no. 4, p. 423.CrossRefGoogle Scholar
  4. 4.
    Burenkov, A.A., Akimov, D.Yu., Grishkin, Yu.L., Kovalenko, A.G., Solovov, V.N., Stekhanov, V.N., Lebedenko, V.N., Neves, F., and Sumner, T.J., Phys. At. Nucl., 2009, vol. 72, no. 4, p. 653.CrossRefGoogle Scholar
  5. 5.
    Akerib, D.S., Bai, X., Bedikian, S., Bernstein, A., Bolozdynya, A., Bradley, A., Cahn, S., Carr, D., Chapman, J.J., Clark, K., Classen, T., Curioni, A., Dahl, C.E., Dazeley, S., et al., Nucl. Instrum. Methods Phys. Res., Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, vol. 709, p. 29. doi 10.1016/j.nima.2013.01.036ADSCrossRefGoogle Scholar
  6. 6.
    XENON Collaboration, Phys. Rev. Lett., 2008, vol. 100, p. 021303. doi 10.1103/PhysRevLett.100. 021303CrossRefGoogle Scholar
  7. 7.
    Aprile, E. and Baudis, L., E-print: arXiv: 0902.4253, 2009.Google Scholar
  8. 8.
    Anan’ev, V.V., Bolozdynya, A.I., Vlasik, K.F., Dmitrenko, V.V., Efremenko, Yu.V., Uteshev, Z.M., Sosnovtsev, V.V., Tolstukhin, I.A., Shakirov, A.V., Shafigullin, R.R., and Khromov, A.V., Instrum. Exp. Tech., 2015, vol. 58, no. 4, p. 581. doi 10.7868/S0032816215030167CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • A. I. Bolozdynya
    • 1
  • Yu. V. Efremenko
    • 1
    • 2
  • A. V. Sidorenko
    • 1
  • V. V. Sosnovtsev
    • 1
  • I. A. Tolstukhin
    • 1
  • A. V. Shakirov
    • 1
  • R. R. Shafigullin
    • 1
  • A. V. Khromov
    • 1
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.University of TennesseeKnoxvilleUSA

Personalised recommendations