Advertisement

Instruments and Experimental Techniques

, Volume 56, Issue 3, pp 265–270 | Cite as

Studying the counting rate capability of a glass multigap resistive plate chamber at an increased operating temperature

  • V. A. Gapienko
  • O. P. Gavrishchuk
  • A. A. Golovin
  • A. A. Semak
  • S. Ya. Sychkov
  • Yu. M. Sviridov
  • E. A. Usenko
  • M. N. Ukhanov
Nuclear Experimental Techniques

Abstract

It is shown that a multigap resistive plate chamber made of commercial float glass is capable of sustaining high counting rates at an increased operating temperature. Two glass chambers were investigated on the test beamline of the U-70 accelerator at the Institute for High Energy Physics. The required radiation flux density at the detector was produced by means of radioactive sources. The time resolution of 80 ps or better was attained at a rate of ∼20 kHz/cm2 and an operating temperature of 45°C.

Keywords

Rate Capability Radioactive Source Volume Resistivity High Counting Rate High Voltage Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CBM Techical Design Report, 2005. http://www.gsi.de/forschung/fair-experiments/CBM/
  2. 2.
    Senger, P., J. Phys. G. Nucl. Part. Phys., 2002, vol. 28, p. 186.CrossRefGoogle Scholar
  3. 3.
    MPD Conceptual Design Report. Version 1.4. http://nica.jinr.ru/files/CDR-MPD/MPD-CDR-1.4.pdf
  4. 4.
    Fonte, P., Smirnitski, A., and Williams, M.C.S., Nucl. Instrum. Methods Phys. Res., A, 2000, vol. 443, p. 201.ADSCrossRefGoogle Scholar
  5. 5.
    Akindinov, A., Fonte, P., Formenti, F., et al., IEEE Trans. Nucl. Sci., 2001, vol. 48, p. 1658.ADSCrossRefGoogle Scholar
  6. 6.
    Akindinov, A., Anselmo, A., Basile, M., et al., Nucl. Instrum. Methods Phys. Res., A, 2000, vol. 456, p. 16.ADSCrossRefGoogle Scholar
  7. 7.
    An, S., Jo, Y.K., Kim, J.S., et al., Nucl. Instrum. Methods Phys. Res., A, 2008, vol. 594, p. 39.ADSCrossRefGoogle Scholar
  8. 8.
    Riegler, W., Lippmann, C., and Veenhof, R., Nucl. Instrum. Methods Phys. Res., A, 2003, vol. 500, p. 144.ADSCrossRefGoogle Scholar
  9. 9.
    Ammosov, V., Ciobanu, M., Dohrmann, F., et al., Nucl. Instrum. Methods Phys. Res., A, 2007, vol. 576, p. 331.ADSCrossRefGoogle Scholar
  10. 10.
    Lopes, L., Ferrerira, M.R., Fonte, P., et al., Nucl. Phys. B (Proc. Suppl.), 2006, vol. 158, p. 66.ADSCrossRefGoogle Scholar
  11. 11.
    Gustavino, C., Candela, A., De Deo, M., et al., Nucl. Instrum. Methods Phys. Res., A, 2004, vol. 527, p. 471.ADSCrossRefGoogle Scholar
  12. 12.
    Gonzalez-Dias, D., Belver, D., Blanko, A., et al., Nucl. Instrum. Methods Phys. Res., A, 2005, vol. 555, p. 72.ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Schuttauf, A., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 533, p. 65.ADSCrossRefGoogle Scholar
  15. 15.
    Akindinov, A., Alici, A., Anselmo, F., et al., Nucl. Instrum. Methods Phys. Res., A, 2002, vol. 490, p. 58.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Gapienko
    • 1
  • O. P. Gavrishchuk
    • 2
  • A. A. Golovin
    • 1
  • A. A. Semak
    • 1
  • S. Ya. Sychkov
    • 2
  • Yu. M. Sviridov
    • 1
  • E. A. Usenko
    • 2
  • M. N. Ukhanov
    • 1
  1. 1.Institute for High Energy PhysicsProtvino, Moscow oblastRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations