Instruments and Experimental Techniques

, Volume 53, Issue 6, pp 890–894 | Cite as

A three-frequency Lidar for sensing microstructure characteristics of stratospheric aerosols

  • V. D. Burlakov
  • S. I. Dolgii
  • A. V. Nevzorov
Physical Instruments for Ecology, Medicine, and Biology


A three-frequency lidar developed at the Siberian Lidar Station of the Zuev Institute of Atmospheric Optics (Siberian Branch, Russian Academy of Sciences) at Tomsk (56.5° N, 85.0° E) is described. The lidar is intended for sensing the microstructure characteristics of stratospheric aerosol at wavelengths of 355, 532, and 683 nm, which are, respectively, the third and second radiation harmonics of a Nd:YAG laser and the first Stokes component of conversion of laser radiation at a wavelength of 532 nm in hydrogen on the basis of the stimulated Raman scattering (SRS) effect. Knowledge of microstructure characteristics of the stratospheric aerosol is necessary for studying its influence on the radiation-temperature and chemical balance of the entire atmosphere. Some results of full-scale lidar measurements are presented.


Lidar Stimulate Raman Scattering Aerosol Layer Stratospheric Aerosol Lidar Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coakley, J.A. and Grams, G., J. Appl. Meteorol., 1976, vol. 15, p. 679.CrossRefADSGoogle Scholar
  2. 2.
    Lacis, A., Hansen, J., and Sato, M., Geophys. Rev. Lett., 1992, vol. 19, no. 15, p. 1607.CrossRefADSGoogle Scholar
  3. 3.
    Ansmann, A., Mattis, I., Wandinger, U., et al., J. Atmos. Sci., 1997, vol. 54, no. 22, p. 2630.CrossRefADSGoogle Scholar
  4. 4.
    Thomason, L.W., Poole, L.R., and Deshler, T.A., J. Geophys. Res., 1997, vol. 102, no. D7, p. 8967.CrossRefADSGoogle Scholar
  5. 5.
    Deshler, T., Hervig, M.E., Hofmann, D.J., et al., J. Geophys. Res., 2003, vol. 08, no. D5, p. 4/1.Google Scholar
  6. 6.
    Virolainen, Ya.A., Timofeev, Yu.M., Polyakov, A.V., et al., Izv. Akad. Nauk, Fiz. Atmos. Okeana, 2006, vol. 42, no. 6, p. 816.Google Scholar
  7. 7.
    Naats, I.E., Teoriya mnogochastotnogo lazernogo zondirovaniya atmosfery (Theory of Multifrequency Laser Sensing of Atmosphere), Novosibirsk: Nauka, 1980.Google Scholar
  8. 8.
    Naats, I.E., in Distantsionnye metody issledovaniya atmosfery (Remote Methods for Investigating the Atmosphere), Novosibirsk: Nauka, 1980, pp. 41–89.Google Scholar
  9. 9.
    Zuev, V.E., Kozlov, N.V., Makienko, E.V., et al., Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okeana, 1977, vol. 13, no. 6, p. 648.Google Scholar
  10. 10.
    Pravdin, V.L., Zuev, V.V., and Nevzorov, A.V., Opt. Atmos. Okeana, 1996, vol. 9, no. 12, p. 1612.Google Scholar
  11. 11.
    Measures, R.M., Laser Remote Sensing. Fundamentals and Applications, New York: Wiley, 1984.Google Scholar
  12. 12.
    Zuev, V.V., El’nikov, A.V., and Burlakov, V.D., Lazernoe zondirovanie srednei atmosfery (Laser Sensing of Intermediate Atmosphere), Zuev, V.V., Ed., Tomsk: RASKO, 2002.Google Scholar
  13. 13.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh obratnykh zadach (Methods for Solving Ill-Posed Inverse Problems), Moscow: Nauka, 1974.Google Scholar
  14. 14.
    Makienko, E.V. and Naats, I.E., Izv. Akad. Nauk SSSR, Ser. FAO., 1983, vol. 19, no. 9, p. 991.Google Scholar
  15. 15.
    Zuev, V.V., Balin, Yu.S., Bukin, O.A., et al., Opt. Atmos. Okeana, 2009, vol. 22, no. 5, p. 450.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. D. Burlakov
    • 1
  • S. I. Dolgii
    • 1
  • A. V. Nevzorov
    • 1
  1. 1.Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations