Instruments and Experimental Techniques

, Volume 53, Issue 4, pp 613–619 | Cite as

Single-crystal diamond probes for atomic-force microscopy

  • P. G. Kopylov
  • B. A. Loginov
  • R. R. Ismagilov
  • A. N. Obraztsov
Laboratory Techniques


The results of investigations aimed at the development and testing of diamond probes for scanning atomic-force microscopy are presented. Plasmochemical deposition of diamond polycrystalline films and selective thermal oxidation were used to manufacture diamond probes. The obtained single-crystal diamond pyramidal tips of micron size had a radius of curvature of 2–20 nm at the top. The diamond tips were attached to a cantilever with an epoxy adhesive and then tested as probes in scanning atomic-force microscopy. Tests have shown that the manufactured diamond probes have appreciable advantages over conventional probes.


Atomic Force Microscopy Atomic Force Microscopy Image Pressure Force Diamond Film Granulometric Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Handbook of Industrial Diamonds and Diamond Films, Prelas, M.A. et al., Eds., New York: Marcel Dekker, 1998.Google Scholar
  2. 2.
    Handbook of Carbon, Graphite, Diamond, and Fullerenes. Properties, Processing, and Applications, Pierson, H., Ed., USA, N.J.: Noyes Publications, Park Ridge, 1993.Google Scholar
  3. 3.
    Jarvis, M.R., Perez, R., and Payne, M.C., Phys. Rev. Lett., 2001, vol. 86, p. 1287.CrossRefADSGoogle Scholar
  4. 4.
    Mesa, B. and Magonov, S., J. Physics: Conf. Series, 2007, vol. 61, p. 770.CrossRefADSGoogle Scholar
  5. 5.
    Niedermann, Ph., Hanni, W., Morel, A., et al., Appl. Phys. A, 1998, vol. 66, p. S31.CrossRefADSGoogle Scholar
  6. 6.
    Niedermann, Ph., Hanni, W., Thurre, S., et al., Surface Interf. Analysis, 1999, vol. 27, p. 296.CrossRefGoogle Scholar
  7. 7.
    Spitsyn, B.V, in Handbook of Crystal Growth, Hurtle, D.T.J., Ed., Amsterdam: Elsevier Science B.V, 1994, vol. 3, p. 401.Google Scholar
  8. 8.
    Obraztsov, A.N., Kopylov, P.G., Chuvilin, A.L., and Savenko, N.V., Diamond Relat. Mater., 2009, vol. 18, p. 1289.CrossRefGoogle Scholar
  9. 9.
    Kopylov, P.G., Obraztsov, A.N., Dolganov, M.A., and Abramchuk, S.S., Fizikokhim. Poverkhn. Zashch. Mater., 2009, vol. 45, no. 5, p. 500.Google Scholar
  10. 10.
    Zhang, C.Y., Wang, C.X., Yang, Y.H., and Yang, G.W., J. Phys. Chem. B, 2004, vol. 108, p. 2589.CrossRefGoogle Scholar
  11. 11.
    Pavlovskii, I.Yu. and Obraztsov, A.N., Prib. Tekh. Eksp., 1998, no. 1, p. 152.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • P. G. Kopylov
    • 1
  • B. A. Loginov
    • 2
  • R. R. Ismagilov
    • 1
  • A. N. Obraztsov
    • 1
  1. 1.Physics DepartmentMoscow State UniversityMoscowRussia
  2. 2.Moscow State Institute of Electronic EngineeringZelenograd, MoscowRussia

Personalised recommendations