Inorganic Materials

, Volume 55, Issue 11, pp 1156–1161 | Cite as

Synthesis of a Composite Material Based on a Mixture of Calcium Phosphates and Sodium Alginate

  • A. A. TsyganovaEmail author
  • O. A. Golovanova


We have prepared a composite material based on a mixture of calcium phosphates and sodium alginate and investigated their composition, morphology, and dynamic dissolution behavior. The addition of a powder material to the sodium alginate matrix causes no changes in its composition, but increases the specific surface area and resorption rate of the sample. We have optimized the synthesis conditions of the composite material: the filler/matrix ratio and the drying temperature and time.


composite material mixture of calcium phosphates sodium alginate thermal analysis dynamic dissolution 



  1. 1.
    Kundu, J., Pati, F., Shim, J.H., and Cho, D.W., Rapid Prototyping Technology for Bone Regeneration. Principles and Applications, Cambridge: Woodhead, 2014, pp. 254–284.Google Scholar
  2. 2.
    Popov, V.K., Komlev, V.S., and Chichkov, B.N., Calcium phosphate blossom for bone tissue engineering, Mater. Today, 2014, vol. 2, pp. 96–97.CrossRefGoogle Scholar
  3. 3.
    Angelov, A.I., Levin, B.V., and Chernenko, Y.D., Phosphate Ore, Moscow, 2000, p. 120.Google Scholar
  4. 4.
    Wopenka, B. and Pasteris, J.D., A mineralogical perspective on the apatite in bone, Mater. Sci. Eng., 2005, vol. 25, no. 2, pp. 131–143.CrossRefGoogle Scholar
  5. 5.
    Dorozhkin, S.V., Calcium orthophosphates, J. Mater. Sci., 2007, vol. 42, pp. 1061–1095.CrossRefGoogle Scholar
  6. 6.
    Venkatesan, J. and Kim, Se.K., Marine biomaterials, in Springer Handbook of Marine Biotechnology, Berlin: Springer, 2015, pp. 3–19.Google Scholar
  7. 7.
    Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., The chemistry of calcium phosphate-based inorganic biomaterials, Ross. Khim. Zh., 2004, vol. 48, no. 4, pp. 32–46.Google Scholar
  8. 8.
    Musskaya, O.N., Lesnikovich, Yu.A., Kazbanov, V.V., and Zhitkova, N.S., Preparation of bioactive mesoporous calcium phosphate granules, Inorg. Mater., 2018, vol. 54, no. 2, pp. 117–124.CrossRefGoogle Scholar
  9. 9.
    Chaikina, M.V., Mekhanokhimiya prirodnykh i sinteticheskikh apatitov (Mechanochemistry of Natural and Synthetic Apatites), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2002, p. 223.Google Scholar
  10. 10.
    Zakharov, N.A., Demina, L.I., Aliev, A.D., et al., Synthesis and properties of calcium hydroxyapatite/silk fibroin organomineral composites, Inorg. Mater., 2017, vol. 53, no. 3, pp. 333–342.CrossRefGoogle Scholar
  11. 11.
    Safronova, T.V., Putlyaev, V.I., Shekhirev, M.A., and Kuznetsov, A.V., Composite ceramics containing a bioresorbable phase, Steklo Keram., 2007, no. 3, pp. 31–35.Google Scholar
  12. 12.
    Gromov, A.V., A new generation of osteoplastic materials, in Farmatsevticheskie i meditsinskie biotekhnologii: Sbornik tezisov nauchno-prakticheskoi konferentsii (Pharmaceutical and Medical Biotechnologies: Scientific–Practical Conf.), Moscow, 2012, p. 226.Google Scholar
  13. 13.
    Komlev, V.S., Barinov, S.M., Bozo, I.I., Deev, R.V., Eremin, I.I., Fedotov, A.Y., et al., Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 19, pp. 16 610–16 620.Google Scholar
  14. 14.
    Gurin, A.N., Fedotov, A.Yu., Deev, R.V., and Komlev, V.S., Targeted bone tissue regeneration using a barrier membrane based on sodium alginate and octacalcium phosphate, Kletochnaya Transplantol. Tkanevaya Inzh., 2013, vol. 8, no. 4, pp. 8–12.Google Scholar
  15. 15.
    Karalkin, P.A., Sergeeva, N.S., Komlev, V.S., et al., Biocompatibility and osteoplastic properties of mineral–polymer composite materials based on sodium alginate sodium alginate, gelatin, and calcium phosphates intended for 3D printing of bone substitute constructs, Geny Kletki, 2016, vol. 11, no. 3, pp. 94–101.Google Scholar
  16. 16.
    Sergeeva, N.S., Komlev, V.S., Sviridova, I.K., et al., Evaluation of alginate–calcium phosphate composite materials intended for use in prototyping technologies for in vitro bone defect substitution, Vestn. Travmatol. Ortopedii im. N. N. Priorova, 2015, no. 1, pp. 28–34.Google Scholar
  17. 17.
    Gurin, A.N., Komlev, B.C., Fedotov, A.Yu., Berkovskii, A.A., Mamonov, V.E., and Erieor’yan, A.S., Comparative characterization of chitosan-, alginate-, and fibrin-based materials in combination with p-tricalcium phosphate for osteoplasty (experimental morphological investigation), Stomatologiya, 2014, vol. 93, pp. 4–10.CrossRefGoogle Scholar
  18. 18.
    Tung, M.S., Tomazic, B., and Brown, W.E., The effects of magnesium and fluoride on the hydrolysis of octacalcium phosphate, Arch. Oral Biol., 1992, pp. 585–591.Google Scholar
  19. 19.
    Dorozhkin, S.V., Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, pp. 1465–1485.CrossRefGoogle Scholar
  20. 20.
    Yusova, A.A., Gusev, I.V., and Lipatova, I.M., Properties of hydrogels based on mixtures of sodium alginate with other polysaccharides of natural origin, Khim. Rastit. Syr’ya, 2014, no. 4, pp. 59–66.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Dostoevsky State UniversityOmskRussia

Personalised recommendations