Advertisement

Inorganic Materials

, Volume 55, Issue 11, pp 1172–1178 | Cite as

Modeling Iron Pentacarbonyl Ultrapurification in a Vertical Distillation Apparatus

  • V. A. Shaposhnikov
  • Yu. S. Belozerov
  • Yu. P. KirillovEmail author
  • A. D. Bulanov
  • A. M. Potapov
  • M. O. Steshin
Article
  • 3 Downloads

Abstract

This paper presents a mathematical model for the ultrapurification of substances via distillation in a closed vaporization–condensation system, where vapor condenses on a flowing down liquid film. We jointly analyze the mechanisms behind vaporization, vapor transport, condensation, condensate motion, and impurity diffusion in vaporizing liquid. Examining the removal of cobalt impurities from iron pentacarbonyl as an example, we assess the degree of purification as a function of vaporization and condensation temperatures, vaporization area, the fraction of liquid vaporized, and the radius and height of the condensation tube. Using experimentally determined temperature-dependent effective separation coefficients and the mathematical model, we find diffusion coefficients and equilibrium separation coefficients of cobalt, tungsten, and chromium impurities in iron pentacarbonyl.

Keywords:

distillation closed system condensation vertical tube flowing down liquid separation coefficient degree of purification iron pentacarbonyl cobalt impurities 

Notes

ACKNOWLEDGMENTS

We are grateful to Academician M.F. Churbanov for useful discussions.

FUNDING

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 0095-2019-0003.

REFERENCES

  1. 1.
    Volkov, V.L., Syrkin, V.G., and Tolmasskii, I.S., Karbonil’noe zhelezo (Carbonyl Iron), Moscow: Metallurgiya, 1969.Google Scholar
  2. 2.
    Maruyama, T. and Shinyashiki, Y., Iron–iron oxide composite thin films prepared by chemical vapor deposition from iron pentacarbonyl, Thin Solid Films, 1998, vol. 333, nos. 1–2, pp. 203–206.  https://doi.org/10.1016/S0040-6090(98)00999-7 CrossRefGoogle Scholar
  3. 3.
    Van Worterghem, J., Mørup, S., Charles, S.W., et al., Formation and chemical stability of metallic glass particles prepared by thermolysis of Fe(CO)5, Hyperfine Interact., 1986, vol. 27, no. 1, pp. 333–336.  https://doi.org/10.1007/BF02354774 CrossRefGoogle Scholar
  4. 4.
    Comprehensive Organometallic Chemistry, Wilkinson, G. et al., Eds., Amsterdam: Elsevier, 1982, vol. 4.Google Scholar
  5. 5.
    Wiesli, R.A., Beard, B.L., Braterman, P.S., et al., Iron isotope fractionation between liquid and vapor phases of iron pentacarbonyl, Talanta, 2007, vol. 71, no. 1, pp. 90–96.  https://doi.org/10.1016/j.talanta.2006.03.026 CrossRefPubMedGoogle Scholar
  6. 6.
    Kuznetsov, V.I., Metalloorganicheskie soedineniya v razdelenii stabil’nykh izotopov (Metalorganic Compounds in the Separation of Stable Isotopes), Moscow: Al’fa-Labl, 2001.Google Scholar
  7. 7.
    Belozerov, Yu.S., Bulanov, A.D., Potapov, A.M., Sozin, A.Yu., Steshin, M.O., and Chernova, O.Yu., Ultrapurification of iron pentacarbonyl by distillation techniques, Inorg. Mater., 2017, no. 10, pp. 1103–1108.  https://doi.org/10.1134/S002016851710003X
  8. 8.
    Devyatykh, G.G. and Elliev, Yu.E., Vvedenie v teoriyu glubokoi ochistki veshchestv (Introduction to the Theory of Ultrapurification), Moscow: Nauka, 1981.Google Scholar
  9. 9.
    Gel’perin, N.I., Osnovnye protsessy i apparaty khimicheskoi tekhnologii (Basic Processes and Apparatuses in Chemical Technology), Moscow: Khimiya, 1981.Google Scholar
  10. 10.
    Kirillov, Yu.P., Shaposhnikov, V.A., Kuznetsov, L.A., Shiryaev, V.S., and Churbanov, M.F., Modeling of the evaporation of liquids and condensation of their vapor during distillation, Inorg. Mater., 2016, vol. 52, no. 11, pp. 1183–1188.  https://doi.org/10.1134/S0020168516110066 CrossRefGoogle Scholar
  11. 11.
    Kirillov, Yu.P., Shaposhnikov, V.A., and Churbanov, M.F., Modeling the ultrapurification of substances by simple distillation, Inorg. Mater., 2017, vol. 53, no. 8, pp. 867–873.  https://doi.org/10.1134/S0020168517080064 CrossRefGoogle Scholar
  12. 12.
    Shaposhnikov, V.A., Belozerov, Yu.S., Kirillov, Yu.P., Bulanov, A.D., and Churbanov, M.F., Modeling iron pentacarbonyl vaporization accompanied by vapor condensation on a flowing down liquid film, Inorg. Mater., 2018, vol. 54, no. 9, pp. 878–884.  https://doi.org/10.1134/S0020168518090157 CrossRefGoogle Scholar
  13. 13.
    Shiryaev, V.S., Pimenov, V.G., Lipatova, M.M., Evdokimov, I.I., Churbanov, M.F., Kirillov, Yu.P., and Kornoukhov, V.N., Removal of barium impurities from selenium by vacuum distillation, Inorg. Mater., 2010, vol. 46, no. 3, pp. 314–317.CrossRefGoogle Scholar
  14. 14.
    Lee, K.-Y. and Kim, M.H., Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube, Nucl. Eng. Des., 2008, vol. 238, no. 1, pp. 207–216.  https://doi.org/10.1016/j.nucengdes.2007.07.001 CrossRefGoogle Scholar
  15. 15.
    Hammami, Y.El., Feddaoui, M., Mediouni, T., and Mir, A., Numerical study of condensing a small condensation of vapour inside a vertical tube, Heat Mass Transfer, 2012, vol. 48, no. 9, pp. 1675–1685.  https://doi.org/10.1007/s00231-012-1011-0 CrossRefGoogle Scholar
  16. 16.
    Adil Charef, M’barek Feddaoui, Monssif Najim, and Hicham Meftah, Liquid film condensation from water vapour flowing downward along a vertical tube, Desalination, 2017, vol. 409, pp. 21–23.  https://doi.org/10.1016/j.desal.2017.01.018 CrossRefGoogle Scholar
  17. 17.
    Knacke, J. and Stranskii, I.N., Evaporation mechanism, Prog. Met. Phys., 1956, vol. 5, no. 6, pp. 181–235.CrossRefGoogle Scholar
  18. 18.
    Ivanovskii, M.N., Sorokin, V.P., and Subbotin, V.I., Isparenie i kondensatsiya metallov (Evaporation and Condensation of Metals), Moscow: Atomizdat, 1976.Google Scholar
  19. 19.
    Kirillov, Yu.P., Kuznetsov, L.A., Shaposhnikov, V.A., and Churbanov, M.F., Effect of diffusion on the purification of substances by distillation, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1092–1096.  https://doi.org/10.1134/S0020168515100088 CrossRefGoogle Scholar
  20. 20.
    Powell, M.J.D., A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations, London: H.M. Stationary Office, 1968.Google Scholar
  21. 21.
    Fletcher, C.A.J., Computational Techniques for Fluid Dynamics, New York: Springer, 1988.CrossRefGoogle Scholar
  22. 22.
    Budak, B.M., Solov’ev, E.N., and Uspenskii, A.B., Difference method with smoothing of coefficients for solving Stefan problems, Zh. Vychislit. Mat. Mat. Fiz., 1965, vol. 5, no. 5, pp. 828–840.Google Scholar
  23. 23.
    Yaws, C.L. and Satyro, M.A., Vapor pressure – inorganic compounds, in The Yaws Handbook of Vapor Pressure: Antoine Coefficients, Amsterdam: Elsevier, 2015, 2nd ed., pp. 315–322.  https://doi.org/10.1016/C2014-0-03590-3
  24. 24.
    Sharova, T.V. and Leonov, M.R., Feasibility of isolating nickel and cobalt trace impurities from iron carbonyl by extraction and distillation, in Poluchenie i analiz chistykh veshchestv (Preparation and Analysis of Pure Substances), Gorky: Gorkovsk. Gos. Univ., 1987, p. 53.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Shaposhnikov
    • 1
  • Yu. S. Belozerov
    • 1
  • Yu. P. Kirillov
    • 1
    Email author
  • A. D. Bulanov
    • 1
  • A. M. Potapov
    • 1
  • M. O. Steshin
    • 1
  1. 1.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations