Inorganic Materials

, Volume 55, Issue 11, pp 1189–1194 | Cite as

Preparation of Stone Castings from Olivine Dolerite

  • V. A. Krenev
  • E. N. Pechenkina
  • S. V. FomichevEmail author


The subject of this study is olivine dolerite, a holocrystalline variety of basic volcanic and dike rocks of the normally alkaline rock subclass of the basalt family. Based on innovative methods combining physicochemical computer simulation and experimental studies, we have developed processes for preparing melts and modifying the composition of this magmatic rock for the fabrication of glass-ceramic materials. Such melts offer mineralogical and chemical homogeneity and high flowability, and their crystallization behavior meets requirements for stone casting. The mineralogical composition of such melts can be modified by melting in different atmospheres (oxidizing, reducing, and inert).


magmatic rocks melting stone casting 



This work was supported by the Presidium of the Russian Academy of Sciences (program no. 37; coordinator, academician K.A. Solntsev).


  1. 1.
    Batanova, A.M., Gramenitskii, E.I., Kotel’nikov, A.R., Plechev, P.Yu., and Shchekina, T.I., Eksperimental’naya i tekhnicheskaya petrologiya (Experimental and Technical Petrology), Moscow: Nauchnyi Mir, 2000, p. 41.Google Scholar
  2. 2.
    Krenev, V.A., Babievskaya, I.Z., Drobot, N.F., et al., Basalt: traditions and current status, Resursy, Tekhnol., Ekon., 2005, no. 5, pp. 15–19.Google Scholar
  3. 3.
    Lipovskii, I.E. and Dorofeev, V.A., Osnovy petrurgii (Principles of Stone Casting), Moscow: Metallurgiya, 1972, p. 320.Google Scholar
  4. 4.
    Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code of Russia: Magmatic, Metamorphic, Metasomatic, and Impact Formations), Bogatikov, O.A., Petrov, O.V., and Morozov, A.F., Eds., St. Petersburg: VSEGEI, 2009, p. 200.Google Scholar
  5. 5.
    Gabbro-basalt raw materials for the production of basalt fiber, Prom–st. Stroit. Mater., Ser. 6, 2003, nos. 1–2, p. 96.Google Scholar
  6. 6.
    Babievskaya, I.Z., Drobot, N.F., Fomichev, S.F., et al., Physicochemical modeling of basalt melt generation for petrurgy, Inorg. Mater., 2008, vol. 44, no. 12, pp. 1334–1340.CrossRefGoogle Scholar
  7. 7.
    Fomichev, S.V., Babievskaya, I.Z., Dergacheva, N.P., et al., Evaluation and modification of the initial composition of gabbro-basalt rocks for mineral-fiber fabrication and stone casting, Inorg. Mater., 2010, vol. 46, no. 10, pp. 1121–1125.CrossRefGoogle Scholar
  8. 8.
    Krenev, V.A., Babievskaya, I.Z., Dergacheva, N.P., et al., Experimental and calculational approaches to determining the mineralogical composition of rocks in mineral-fiber fabrication and stone casting, Inorg. Mater., 2013, vol. 49, no. 4, pp. 408–411.CrossRefGoogle Scholar
  9. 9.
    Magmaticheskie gornye porody (Magmatic Rocks), Bogatikov, O.A., Ed., Moscow: Nauka, 1983, vols. 1, 2, p. 768.Google Scholar
  10. 10.
    Anosov, V.Ya. and Pogodin, S.A., Osnovnye nachala fiziko-khimicheskogo analiza (Basic Principles of Physicochemical Analysis), Moscow: Akad. Nauk SSSR, 1947, p. 876.Google Scholar
  11. 11.
    Rumi, M.Kh., Nurmatov, E.P., Zufarov, M.A., et al., Chemical stability of materials based on melted mineral raw materials from Uzbekistan, Steklo Keram., 2017, no. 7, pp. 32–36.Google Scholar
  12. 12.
    Khan, B.Kh., Bykov, I.I., Korablin, V.P., et al., Zatverdevanie i kristallizatsiya kamennogo lit’ya (Hardening and Crystallization of Cast Stone), Kiev: Naukova Dumka, 1969, p. 193.Google Scholar
  13. 13.
    Rashin, G.A., Possibilities of controlled mineral formation in stone casting, Probl. Kamennogo Lit’ya, 1968, no. 2, pp. 12–16.Google Scholar
  14. 14.
    Techer, I., Advocat, T., and Lancelot, J., Dissolution kinetics of basaltic glasses: control by solution chemistry and protective effect of the alteration film, Chem. Geol., 2001, vol. 176, nos. 1–4, pp. 235–263.CrossRefGoogle Scholar
  15. 15.
    Mysen, B.O., Element portioning between minerals and melt, melt composition and melt structure, Chem. Geol., 2004, vol. 213, nos. 1–3, pp. 1–16.CrossRefGoogle Scholar
  16. 16.
    Rashin, G.A., Concerning the special role of iron in silicate melt solidification under nonequilibrium conditions, Izv. Akad. Nauk SSSR, Geol., 1961, no. 11, pp. 160–163.Google Scholar
  17. 17.
    Problemy kamennogo lit’ya (sb) (Current Issues in Stone Casting: A Collection of Articles), Ovcharenko, F.D., Ed., Kiev: Akad. Nauk Ukr. SSR, 1963, p. 227.Google Scholar
  18. 18.
    Khodzhaev, N.T., Khakberdiev, N.M., Khamidov, R.A., et al., Mineral raw materials base for stone casting raw materials in Uzbekistan and feasibility of extending it, Razved. Okhr. Nedr, 2016, no. 2, pp. 20–26.Google Scholar
  19. 19.
    Chudnenko, K.V., Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya (Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, and Applications), Novosibirsk: GEO, 2010, p. 288.Google Scholar
  20. 20.
    Bychinskii, V.A., Fomichev, S.V., Chudnenko, K.V., and Krenev, V.A., Physicochemical interaction in the system Si–Al–Ti–Ca–Mg–Fe–Na–K–O with the consideration of the formation of solid solutions, Russ. J. Inorg. Chem., 2012, vol. 57, no. 6, pp. 854–857.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Krenev
    • 1
  • E. N. Pechenkina
    • 1
  • S. V. Fomichev
    • 1
    Email author
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations