Advertisement

Inorganic Materials

, Volume 55, Issue 11, pp 1111–1117 | Cite as

High-Temperature X-ray Diffraction Study of the Thermal Expansion and Stability of Nanocrystalline VB2

  • D. Yu. KovalevEmail author
  • N. Yu. Khomenko
  • S. P. Shilkin
Article
  • 5 Downloads

Abstract

The thermal expansion of nano- and microcrystalline VB2 powders has been studied by high-temperature X-ray diffraction in the temperature range 300–1473 K. The thermal expansion coefficient (TEC) of nanocrystalline VB2 has been determined for the first time in the temperature range 300–1473 K and shown to vary linearly with temperature. The TEC of nanocrystalline VB2 has been shown to exceed that of its microcrystalline analog, which is attributable to the larger anharmonicity of atomic vibrations in the nanocrystals. The thermal expansion of nanocrystalline VB2 has been shown to be anisotropic: the c-axis TEC of the material exceeds its a-axis TEC, which is due to the anisotropy in bond strength along the axes of its hexagonal unit cell. As the temperature is raised, the distinction between the TECs along the crystallographic axes of nanocrystalline VB2 decreases, indicating that the B–B covalent bonds in the boride layers of nanocrystalline VB2 become weaker with increasing temperature. At temperatures of up to 1273 K, the crystallite size of nanocrystalline VB2 remains constant at 10–12 nm.

Keywords:

nanocrystalline VB2 thermal expansion coefficient unit-cell parameters anisotropy high-temperature X-ray diffraction 

Notes

REFERENCES

  1. 1.
    Bulfon, C., Leithe-Jasper, A., Sassik, H., and Rogl, P., Microhardness of Czochralski-grown single crystals of VB2, J. Solid State Chem., 1997, vol. 133, no. 1, pp. 113–116.CrossRefGoogle Scholar
  2. 2.
    Demirskyi, D., Sakka, Y., and Vasylkiv, O., Consolidation of B4C–VB2 eutectic ceramics by spark plasma sintering, J. Ceram. Soc. Jpn., 2015, vol. 123, no. 1, pp. 1051–1054.CrossRefGoogle Scholar
  3. 3.
    Cui, X., Wu, Y., and Liu, X., Microstructural characterization and mechanical properties of VB2/A390 composite alloy, J. Mater. Sci. Technol., 2015, vol. 31, no. 10, pp. 1027–1033.CrossRefGoogle Scholar
  4. 4.
    Yang, H.X., Wang, Y.D., Ai, X.P., and Cha, C.S., Metal borides: competitive high capacity anode materials for aqueous primary batteries, Electrochem. Solid-State Lett., 2004, vol. 7, no. 7, pp. A212–A215.CrossRefGoogle Scholar
  5. 5.
    Licht, S., Hettige, C., Lau, J., Cubeta, U., Wu, H., Stuart, J., and Wang, B., Nano-VB2 synthesis from elemental vanadium and boron: nano-VB2 anode/air batteries, Electrochem. Solid-State Lett., 2012, vol. 15, no. 1, pp. A12–A14.CrossRefGoogle Scholar
  6. 6.
    Andrievskii, R.A., Nanostructured titanium, zirconium, and hafnium diborides: synthesis, properties, size effects, and stability, Usp. Khim., 2015, vol. 84, no. 5, pp. 540–554.CrossRefGoogle Scholar
  7. 7.
    Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments: Fundamentals and Applications, Heidelberg: Springer, 2016.CrossRefGoogle Scholar
  8. 8.
    Carenco, S., Portehault, D., Boissiere, C., Mezailles, N., and Sanchez, C., Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev., 2013, vol. 113, no. 10, pp. 7981–8065.CrossRefGoogle Scholar
  9. 9.
    Andrievskii, R.A. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove. Spravochnik (Strength of Refractory Compounds and Related Materials: A Handbook), Chelyabinsk: Metallurgiya, 1989.Google Scholar
  10. 10.
    Basu, B. and Balani, K., Advanced Structural Ceramics, Hoboken: Wiley, 2011.CrossRefGoogle Scholar
  11. 11.
    Samsonov, G.V., Kovenskaya, B.A., Serebryakova, T.I., and Tel’nikov, E.Ya., Thermal expansion of Group IV and V transition metal diborides, Teplofiz. Vys. Temp., 1971, vol. 9, no. 1, pp. 195–197.Google Scholar
  12. 12.
    Lönnberg, B., Thermal expansion studies on the Group IV–VII transition metal diborides, J. Less-Common Met., 1988, vol. 141, no. 1, pp. 145–156.CrossRefGoogle Scholar
  13. 13.
    Kravchenko, S.E., Kovalev, D.Yu., Korobov, I.I., Kalinnikov, G.V., Konovalikhin, S.V., Khomenko, N.Yu., and Shilkin, S.P., Synthesis of zirconium diboride nanoparticles by the reaction of ZrCl4 with NaBH4 in an ionic potassium bromide melt, Russ. J. Gen. Chem., 2018, vol. 88, no. 81, pp. 1757–1758.CrossRefGoogle Scholar
  14. 14.
    Terlan, B., Akselrud, L., Baranov, A., Borrmann, H., and Grin, Yu., On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2, Acta Crystallogr., Sect. B: Struct. Sci., 2015, vol. 71, pp. 777–787.CrossRefGoogle Scholar
  15. 15.
    Dymchenko, N.P., Shishlyannikova, L.M., and Yaroslavtseva, N.N., Application of a computer in calculations of the fine crystal structure of polycrystals by the methods of second and fourth moments, Appar. Metody Rentgenovskogo Anal., 1974, no. 15, pp. 37–45.Google Scholar
  16. 16.
    Pease, R.S., An X-ray study of boron nitride, Acta Crystallogr., 1952, vol. 5, no. 3, pp. 356–361.CrossRefGoogle Scholar
  17. 17.
    Terlan, B., Levin, A.A., Börrnert, F., Zeisner, J., Kataev, V., Schmidt, M., and Eychmüller, A., A size-dependent analysis of the structural, surface, colloidal, and thermal properties of Ti1 – xB2 (x = 0.03–0.08) nanoparticles, Eur. J. Inorg. Chem., 2016, vol. 21, pp. 3460–3468.CrossRefGoogle Scholar
  18. 18.
    International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standards (JCPDS).Google Scholar
  19. 19.
    Kovalev, D.Yu., Shilkin, S.P., Konovalikhin, S.V., Kalinnikov, G.V., Korobov, I.I., Kravchenko, S.E., Khomenko, N.Yu., and Andrievskii, R.A., Thermal expansion of micro and nanocrystalline HfB2, High Temp., 2019, vol. 57, no. 1, pp. 32–36.CrossRefGoogle Scholar
  20. 20.
    Pilladi, T.R., Panneerselvam, G., Anthonysamy, S., and Ganesam, V., Thermal expansion of nanocrystalline boron carbide, Ceram. Int., 2012, vol. 38, no. 5, pp. 3723–3728.CrossRefGoogle Scholar
  21. 21.
    Sadovnikov, V.I. and Gusev, A.I., Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations, Phys. Solid State, 2014, vol. 56, no. 11, pp. 2353–2358.CrossRefGoogle Scholar
  22. 22.
    Gusev, A.I., Sadovnikov, V.I., Chukin, A.V., and Rempel’, A.A., Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S, Phys. Solid State, 2016, vol. 58, no. 2, pp. 251–257.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. Yu. Kovalev
    • 1
    Email author
  • N. Yu. Khomenko
    • 1
  • S. P. Shilkin
    • 2
  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations