Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Physicochemical Principles Underlying the Synthesis of Granular Semiconductor–Ferromagnet Magnetic Structures Exemplified by AIIGeAs2 (AII = Zn, Cd) Materials

  • 29 Accesses

Abstract—

This paper presents an analytical review that addresses physicochemical principles underlying the synthesis of granular structures in semiconductor–ferromagnet systems. Such systems comprise a II–IV–V2, II2–V3, or II–V2 compound as a semiconductor and MnAs as a ferromagnet. We demonstrate that granular magnetic structures are an alternative to superlattices in spintronic devices and can exhibit giant magnetoresistance and tunneling magnetoresistance effects. It is shown that, owing to the high carrier mobility in semiconductors, they are more attractive as matrices of granular materials than are metals or dielectrics. We have formulated the basic principles underlying the synthesis of granular structures with high magnetoresistance based on eutectic systems. Eutectic crystallization involves simultaneous crystallization of all the constituent phases, leading to the formation of an unusual, fine structure. High cooling rates are favorable for metastable crystallization. This causes a synergistic effect, stimulating nanostructuring and favoring the formation of granular structures. We present results on semiconductor–ferromagnet systems and demonstrate the possibility of producing granular magnetic structures with high magnetoresistance in such systems.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Iqbal, M.Z., Qureshi, N.A., and Hussain, G., Recent advancements in 2D-materials interface based magnetic junctions for spintronics, J. Magn. Magn. Mater., 2018, vol. 457, pp. 110–125. https://doi.org/10.1016/j.jmmm.2018.02.084

  2. 2

    Van Dorpe, P., Liu, Z., Roy, W.V., Motsnyi, V.F., Sawicki, M., Borghs, G., and De Boeck, J., Very high spin polarization in GaAs by injection from a (Ga,Mn)As Zener diode, Appl. Phys. Lett., 2004, vol. 84, pp. 3495–3497. https://doi.org/10.1063/1.1738515

  3. 3

    Fert, A., The origin, development and future of spintronics, Usp. Fiz. Nauk, 2008, vol. 178, no. 12, pp. 1336–1348. https://doi.org/10.3367/UFNr.0178.200812f.1336

  4. 4

    Ognev, A.V., Samardak, A.S., Vorob’ev, Yu.D., and Chebotkevich, L.A., Magnetic anisotropy of Co/Cu/Co films with indirect exchange coupling, Phys. Solid State, 2004, vol. 46, no. 6, pp. 1084–1087.

  5. 5

    Baibich, M.N., Broto, J.M., Fert, A., et al., Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett., 1988, vol. 61, pp. 2472–2475. https://doi.org/10.1103/PhysRevLett.61.2472

  6. 6

    Grünberg, P., Schreiber, R., Pang, Y., et al., Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, J. Appl. Phys., 1987, vol. 61, no. 8, pp. 3750–3752.

  7. 7

    Xiong, P., Xiao, G., Wang, J.Q., Xiao, J.Q., Jiang, J.S., and Chien, C.L., Extraordinary Hall effect and giant magnetoresistance in the granular Co–Ag system, Phys. Rev. Lett., 1992, vol. 69, pp. 3220–3223. https://doi.org/10.1103/PhysRevLett.69.3220

  8. 8

    Berkowitz, A.E., Mitchell, J.R., Carey, M.J., Young, A.P., Rao, D., Starr, A., Zhang, S., Spada, F.E., Parker, F.T., Hutten, A., and Thomas, G., Giant magnetoresistance in heterogeneous Cu–Co and Ag–Co alloy films, J. Appl. Phys., 1993, vol. 73, no. 10, pp. 5320–5325. https://doi.org/10.1063/1.353767

  9. 9

    Chien, C.L., Xiao, J.Q., and Jiang, J.S., Giant negative magnetoresistance in granular ferromagnetic systems (invited), J. Appl. Phys., 1993, vol. 73, no. 10, pp. 5309–5314. https://doi.org/10.1063/1.353765

  10. 10

    Milner, A., Gerber, A., Groisman, B., et al., Spin-dependent electronic transport in granular ferromagnets, Phys. Rev. Lett., 1996, vol. 76, no. 3, pp. 475–478. https://doi.org/10.1103/PhysRevLett.76.475

  11. 11

    Dubiel, B., Wolf, D., and Czyrska-Filemonowicz, A., TEM and electron holography analyses of granular and thin layered Cu–Co magnetic materials, Ultramicroscopy, 2010, vol. 110, no. 5, pp. 433–437. https://doi.org/10.1016/j.ultramic.2009.10.017

  12. 12

    Wang, C.Z., Zhang, P., Zheng, L., Xiao, X., and Rong, Y., Influence of annealing on microstructure and magnetic-transport of FeCo–Al2O3 nanogranular films, Thin Solid Films, 2008, vol. 516, pp. 3422–3430. https://doi.org/10.1016/j.tsf.2007.12.121

  13. 13

    Ognev, A.V., Samardak, A.S., Vorob’ev, Yu.D., and Chebotkevich, L.A., Magnetic anisotropy of Co/Cu/Co films with indirect exchange coupling, Phys. Solid State, 2004, vol. 46, no. 6, pp. 1084–1087.

  14. 14

    Polyakov, V.V., Polyakova, K.P., Seredkin, V.A., and Patrin, G.S., Magneto-optical Kerr effect enhancement in Co–Ti–O nanocomposite films, Solid State Phenom., 2012, vol. 190, pp. 506–509. https://doi.org/10.40289/www.scientific.net/SSP.190.506

  15. 15

    Aronzon, B.A., Varfolomeev, A.E., Kovalev, D.Yu., Likal’ter, A.A., Ryl’kov, V.V., and Sedova, M.A., Electrical conductivity, magnetoresistance, and Hall effect in granulated Fe/SiO2 films, Fiz. Tverd. Tela (S.-Peterburg), 1999, vol. 41, no. 6, pp. 944–950.

  16. 16

    Oksuzoglu, R.M., Elmali, A., Weirich, T.E., Fuess, H., and Hahn, H., Evolution of the surface roughness (dynamic scaling) and microstructure of sputter-deposited Ag75Co25 granular films, J. Phys.: Condens. Matter, 2000, vol. 12, pp. 9237–9245. https://doi.org/10.1088/0953-8984/12/44/306

  17. 17

    Du, J., Zhang, B., Zheng, R.K., and Zhang, X.X., Memory effect and spin-glass-like behavior in Co–Ag granular films, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, paper 14 415. https://doi.org/10.1103/PhysRevB.75.014415

  18. 18

    Socolovsky, L.M., Denardin, J.C., Brandl, A.L., and Knobel, M., Magnetotransport, magnetic, and structural properties of TM–SiO2 (TM = Fe, Co, Ni) granular alloys, Mater. Character., 2003, vol. 50, pp. 117–121. https://doi.org/10.1016/S1044-5803(03)00077-9

  19. 19

    Marenkin, S.F., Izotov, A.D., Fedorchenko, I.V., and Novotortsev, V.M., Manufacture of magnetic granular structures in semiconductor–ferromagnet systems, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 295–300. https://doi.org/10.1134/S0036023615030146

  20. 20

    Pashkova, O.N., Izotov, A.D., Sanygin, V.P., and Filatov, A.V., Ferromagnetism of GaSb (2% Mn) alloy, Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1324–1327. https://doi.org/10.1134/S0036023614110187

  21. 21

    Novotortsev, V.M., Kochura, A.V., and Marenkin, S.F., New ferromagnetic based on manganese-alloyed chalcopyrites AIIBIV \({\text{C}}_{2}^{{\text{V}}}\), Inorg. Mater., 2010, vol. 46, no. 13, pp. 1421–1433. https://doi.org/10.1134/S0020168510130029

  22. 22

    Pashkova, O.N., Izotov, A.D., Sanygin, V.P., and Filatov, A.V., Cluster magnetism in doped InSb, Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, pp. 689–692. https://doi.org/10.1134/S0036023614070183

  23. 23

    Fedorchenko, I.V., Ril’, A.I., Marenkin, S.F., Rabinovich, O.I., Legotin, S.A., Didenko, S.I., Skupinski, P., Kilanski, L., and Dobrowolski, W., Phase diagram of the ZnSiAs2–MnAs system, J. Cryst. Growth, 2017, vol. 468, pp. 683–687. https://doi.org/10.1016/j.jcrysgro.2016.10.029

  24. 24

    Aronov, A.N., Marenkin, S.F., Fedorchenko, I.V., Vasil’ev, P.N., and Boeva, N.M., Phase equilibria in the ZnGeAs2–MnAs system, Russ. J. Inorg. Chem., 2016, vol. 61, no. 1, pp. 103–108. https://doi.org/10.1134/S0036023616010058

  25. 25

    Marenkin, S.F., Fedorchenko, I.V., Trukhan, V.M., Trukhanov, S.V., Shelkovaya, T.V., Vasil’ev, P.N., and Zheludkevich, A.L., State diagram of the Zn3As2–MnAs system, Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, pp. 1578–1582. https://doi.org/10.1134/S0036023615120189

  26. 26

    Marenkin, S.F., Ril, A.I., and Fedorchenko, I.V., Phase diagram of ZnAs2–MnAs system, Mendeleev Commun., 2018, vol. 28, no. 2, pp. 219–221. https://doi.org/10.1016/j.mencom.2018.03.038

  27. 27

    Marenkin, S.F., Aronov, A.N., Fedorchenko, I.V., et al., Effect of particle size on the magnetostructural transformation of a manganese monoarsenide-based phase in the ZnGeAs2–MnAs system, Inorg. Mater., 2018, vol. 54, no. 12, pp. 1255–1259.

  28. 28

    Zeldovich, Ya.B., Izbrannye trudy. Khimicheskaya fizika i gidrodinamika (Selected Works: Chemical Physics and Hydrodynamics), Moscow: Nauka, 1984.

  29. 29

    Krapukhin, V.V., Sokolov, I.A., and Kuznetsov, G.D., Tekhnologiya materialov elektronnoi tekhniki (Technology of Materials for Electronic Engineering), Moscow: Mosk. Inst. Stali i Splavov, 1995.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research, theme no. 0088-2014-0003) and in part by the Presidium of the Russian Academy of Sciences (program no. I.35: Scientific Principles of Designing Novel Functional Materials) and the Russian Foundation for Basic Research (grant no. 16-03-00150).

Author information

Correspondence to S. F. Marenkin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marenkin, S.F., Fedorchenko, I.V., Izotov, A.D. et al. Physicochemical Principles Underlying the Synthesis of Granular Semiconductor–Ferromagnet Magnetic Structures Exemplified by AIIGeAs2 (AII = Zn, Cd) Materials. Inorg Mater 55, 865–872 (2019). https://doi.org/10.1134/S0020168519090061

Download citation

Keywords:

  • spintronics
  • granular magnetic structures
  • semiconductors
  • ferromagnets