Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Growth of Thin Cadmium Arsenide Films by Magnetron Sputtering and Their Structure

  • 63 Accesses

Abstract—

Thin (~50 nm) cadmium arsenide films have been grown by magnetron sputtering on single-crystal silicon and sapphire substrates. Using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and Raman spectroscopy, the composition of the films has been shown to correspond to the Cd3As2 stoichiometry. Along with the α-Cd3As2 phase, the films contained trace levels of the α'-Cd3As2 phase. Annealing at 520 K led to recrystallization and the formation of [112] textured films on single-crystal silicon substrates. In the annealed films, the crystallite size evaluated using the Debye–Scherrer equation was ~30 nm.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Armitage, N.P., Mele, E.J., and Vishwanath, A., Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys., 2018, vol. 90, paper 015 001. https://doi.org/10.1103/RevModPhys.90.015001

  2. 2

    Lazarev, V.B., Poluprovodnikovye soedineniya gruppy A II B V (II–V Compound Semiconductors), Moscow: Nauka, 1978.

  3. 3

    Wang, Z., Weng, H., Wu, Q., Dai, X., and Fang, Z., Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, vol. 88, paper 125 427. https://doi.org/10.1103/PhysRevB.88.125427

  4. 4

    Borisenko, S., Gibson, Q., Evtushinsky, D., Zabolotnyy, V., Buchner, B., and Cava, R.J., Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett., 2014, vol. 113, no. 2, paper 027 603. https://doi.org/10.1103/PhysRevLett.113.027603

  5. 5

    He, L.P., Hong, X.C., Dong, J.K., Pan, J., Zhang, Z., Zhang, J., and Li, S.Y., Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett., 2014, vol. 113, paper 246 402. https://doi.org/10.1103/PhysRevLett.113.246402

  6. 6

    Feng, J., Pang, Y., Wu, D., Wang, Z., Weng, H., Li, J., Dai, X., Fang, Z., Shi, Y., and Lu, L., Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points, Phys. Rev. B: Condens. Matter Mater. Phys., 2015, vol. 92, paper 081 306(R). https://doi.org/10.1103/PhysRevB.92.081306

  7. 7

    Zhang, K., Pan, H., Zhang, M., Wei, Z., Gao, M., Song, F., Wang, X., and Zhang, R., Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures, RSC Adv., 2017, vol. 7, pp. 17 689–17 696. https://doi.org/10.1039/C7RA02847D

  8. 8

    Li, C.-Z., Zhu, R., Ke, X., Zhang, J.-M., Wang, L.-X., Zhang, L., Liao, Z.-M., and Yu, D.-P., Synthesis and photovoltaic properties of Cd3As2 faceted nanoplates and nano-octahedrons, Cryst. Growth Des., 2015, vol. 5, no. 7, pp. 3264–3270. https://doi.org/10.1021/acs.cgd.5b00399

  9. 9

    Galeeva, A.V., Krylov, I.V., Drozdov, K.A., Knjazev, A.F., Kochura, A.V., Kuzmenko, A.P., Zakhvalinskii, V.S., Danilov, S.N., Ryabova, L.I., and Khokhlov, D.R., Electron energy relaxation under terahertz excitation in (Cd1 – xZnx)3As2 Dirac semimetals, Belstein J. Nanotechnol., 2017, vol. 8, pp. 167–171. https://doi.org/10.3762/bjnano.8.17

  10. 10

    Wang, Q., Li, C.-Z., Ge, S., Li, J.-G., Lu, W., Lai, J., Liu, X., Ma, J., Yu, D.-P., Liao, Z.-M., and Sun, D., Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2, Nano Lett., 2017, vol. 17, no. 2, pp. 834–841. https://doi.org/10.1021/acs.nanolett.6b04084

  11. 11

    Walowski, J. and Münzenberg, M., Perspective: ultrafast magnetism and THz spintronics, J. Appl. Phys., 2016, vol. 120, paper 140 901. https://doi.org/10.1063/1.4958846

  12. 12

    Zhang, X., Peng, W., Su, G., Su, S., and Chen, J., Thermionic energy conversion based on 3D Dirac semimetals, J. Phys. D: Appl. Phys., 2018, vol. 51, no. 10, paper 405 501. https://doi.org/10.1088/1361-6463/aad975

  13. 13

    Yang, M., Wang, J., Han, J., Ling, J., Ji, C., Kong, X., Liu, X., Huang, Z., Gou, J., Liu, Z., Xiu, F., and Jiang, Y., Enhanced performance of wideband room temperature photodetector based on Cd3As2 thin film/pentacene heterojunction, ASC Photonics, 2018, vol. 5, no. 8, pp. 3438–3435. https://doi.org/10.1021/acsphotonics.8b00727

  14. 14

    Wu, Y.F., Zhang, L., Li, C.Z., Zhang, Z.S., Liu, S., Liao, Z.M., and Yu, D., Dirac semimetal heterostructures: 3D Cd3As2 on 2D graphene, Adv. Mater., 2018, vol. 30, no. 34, paper 1 707 547. https://doi.org/10.1002/adma.201707547

  15. 15

    Jarzabek, B., Weszka, J., and Cisowski, J., Distribution of electronic states in amorphous Cd–As thin films on the basis of optical measurements, J. Non-Cryst. Solids, 2004, vol. 333, no. 2, pp. 206–211. https://doi.org/10.1016/j.jnoncrysol.2003.09.045

  16. 16

    Dubowski, J.J. and Williams, D.F., Pulsed laser evaporation of Cd3As2, Appl. Phys. Lett., 1984, vol. 44, no. 3, paper 339. https://doi.org/10.1063/1.94752

  17. 17

    Dubowski, J.J., Norman, P., Sewell, P.B., Williams, D.F., Kròlicki, F., and Lewicki, M., Cadmium arsenide films prepared by pulsed laser evaporation: electrical properties and lattice parameters, Thin Solid Films, 1987, vol. 147, no. 1, pp. L51–L54. https://doi.org/10.1016/0040-6090(87)90047-2

  18. 18

    Zhalilov, N.S., Sanygin, V.P., Kverdakov, A.M., and Pashkova, O.N., Growth and properties of thin Cd3As2 and Zn3P2 films, Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, no. 9, pp. 1975–1976.

  19. 19

    Din, M. and Gould, R.D., Van der Pauw resistivity measurements on evaporated thin films of cadmium arsenide, Cd3As2, Appl. Surf. Sci., 2006, vol. 252, no. 15, pp. 5508–5501. https://doi.org/10.1016/j.apsusc.2005.12.151

  20. 20

    Nishihaya, S., Uchida, M., Nakazawa, Y., Akiba, K., Kriener, M., Kozuka, Y., Miyake, A., Taguchi, Y., Tokunaga, M., and Kawasaki, M., Negative magnetoresistance suppressed through a topological phase transition in (Cd1 – xZnx)3As2 thin films, Phys. Rev. B: Condens. Matter Mater. Phys., 2018, vol. 97, no. 24, paper 245 103. https://doi.org/10.1103/PhysRevB.97.245103

  21. 21

    Pawlikowski, J.M., Sierański, K., and Szatkowski, J., A new method of obtaining crystalline Cd3As2 films on non-crystalline substrates, Thin Solid Films, 1975, vol. 30, no. 1, pp. 99–102. https://doi.org/10.1016/0040-6090(75)90309-0

  22. 22

    Yuan, X., Cheng, P., Zhang, L., Zhang, C., Wang, J., Liu, Y., Sun, Q., Zhou, P., Zhang, D.W., Hu, Z., Wan, X., Yan, H., Li, Z., and Xiu, F., Direct observation of Landau level resonance and mass generation in Dirac semimetal Cd3As2 thin films, Nano Lett., 2017, vol. 17, no. 4, pp. 2211–2219. https://doi.org/10.1021/acs.nanolett.6b04778

  23. 23

    Schumann, T., Galletti, L., Kealhofer, D.A., Kim, H., Goyal, M., and Stemmer, S., Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2, Phys. Rev. Lett., 2018, vol. 120, no. 1, paper 016 801. https://doi.org/10.1103/PhysRevLett.120.016801

  24. 24

    Galletti, L., Schumann, T., Shoron, O.F., Goyal, M., Kealhofer, D.A., Kim, H., and Stemmer, S., Two-dimensional Dirac fermions in thin films of Cd3As2, Phys. Rev. B: Condens. Matter Mater. Phys., 2018, vol. 97, no. 11, paper 115 132. https://doi.org/10.1103/PhysRevB.97.115132

  25. 25

    Zdanowicz, L., Pocztowski, G., Weclewicz, C., Niedzwiedz, N., and Kwiecien, T., Some properties of thin amorphous Cd3As2 films related to deposition conditions, Thin Solid Films, 1976, vol. 34, no. 1, pp. 161–164. https://doi.org/10.1016/0040-6090(76)90158-9

  26. 26

    Arushanov, E.K., Crystal growth and characterization of II3V2 compounds, Prog. Cryst. Growth Character., 1980, vol. 3, paper 211. https://doi.org/10.1016/0146-3535(80)90020-9

  27. 27

    Bergerhoff, G. and Brown, I.D., Crystallographic Databases, Allen, F.H. et al., Eds., Chester: International Union of Crystallography, 1987.

  28. 28

    Kraus, W. and Nolze, G., Powder cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, pp. 301–303. https://doi.org/10.1107/S0021889895014920

  29. 29

    Weszka, J., Renucc, M.I., and Zwick, A., Some aspects of Raman scattering in Cd3As2 single crystals, Phys. Status Solidi B, 1986, vol. 133, pp. 57–63. https://doi.org/10.1002/pssb.2221330106

  30. 30

    Wei, S., Lu, J., Zhang, W., and Qian, Y., Isostructural Cd3E2 (E = P, As) microcrystals prepared via a hydrothermal route, Cryst. Growth Des., 2006, vol. 6, no. 4, pp. 849–853. https://doi.org/10.1021/cg049589u

  31. 31

    Schönherr, P. and Hesjedal, T., Structural properties and growth mechanism of Cd3As2 nanowires, Appl. Phys. Lett., 2015, vol. 106, paper 013 115. https://doi.org/10.1063/1.4905564

  32. 32

    Cheng, P., Zhang, C., Liu, Y., Yuan, X., Song, F., Sun, Q., Zhou, P., Zhang, D.W., and Xiu, F., Thickness-dependent quantum oscillations in Cd3As2 thin films, New J. Phys., 2016, vol. 18, paper 083 003. https://doi.org/10.1088/1367-2630/18/8/083003

  33. 33

    Weszka, J., Balkanski, M., Raukhman, A.M., and Marenkin, S.F., Raman scattering and lattice vibrations in tetragonal CdAs2 crystals, Phys. Status Solidi B, 1996, vol. 194, pp. 509–515. https://doi.org/10.1002/pssb.2221940208

  34. 34

    Marenkin, S.F. and Trukhan, V.M., Fosfidy, arsenidy tsinka i kadmiya (Zinc and Cadmium Phosphides and Arsenides), Minsk: Varaskin A.N., 2010.

  35. 35

    Shchelkachev, N.M. and Yarzhemsky, V.G., Influence of crystal structure and 3d impurities on the electronic structure of the topological material Cd3As2, Inorg. Mater., 2018, vol. 54, no. 11, pp. 1093–1098. https://doi.org/10.1134/S0020168518110110

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 17-12-01345). The structural investigation was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of basic research) and in part by the Presidium of the Russian Academy of Sciences (program no. I.35: Scientific Principles of Producing Novel Functional Materials) and the Russian Federation Ministry of Science and Higher Education (grant. no. 16.2814.2017/PCh).

Author information

Correspondence to A. I. Ril’.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kochura, A.V., Zakhvalinskii, V.S., Htet, A.Z. et al. Growth of Thin Cadmium Arsenide Films by Magnetron Sputtering and Their Structure. Inorg Mater 55, 879–886 (2019). https://doi.org/10.1134/S002016851909005X

Download citation

Keywords:

  • thin films
  • magnetron sputtering
  • cadmium arsenide
  • resistivity
  • negative magnetoresistance
  • structural phase transition