Skip to main content
Log in

Effect of the Carbon Source on the Electrochemical Properties of Li4Ti5O12/C Composites Prepared by Solid-State Synthesis

  • Published:
Inorganic Materials Aims and scope

Abstract—

Li4Ti5O12/C composite anode materials have been prepared by solid-state reactions using lithium- or titanium-containing reagents (lithium lactate, acetate, and acetylacetonate or titanium oxyacetylacetonate) not only as precursors for the synthesis of lithium titanate but also as carbon sources. In addition, two surfactants, Pluronic 123 (P123) and cetyltrimethylammonium bromide, have been used as carbon sources. The composites have been characterized by X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and their electrochemical properties have been studied. The results demonstrate that the best electrochemical performance is offered by the materials prepared using P123. In particular, the discharge capacity of the Li4Ti5O12/C material prepared using TiO2/P123 and lithium lactate is 119 and 44 mAh/g at current densities of 200 and 3200 mA/g, respectively. The materials prepared using lithium and titanium acetylacetonates have high carbon content and undergo more severe degradation during cycling at high current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yi, T.-F., Yang, S.-Y., and Xie, Y., Recent advances of Li4Ti5O12 as promising next generation anode material for high power lithium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, pp. 5750–5777. https://doi.org/10.1039/C4TA06882C

  2. Yang, Y., Qiao, B., Yang, X., Fang, L., Pan, C., Song, W., Hou, H., and Ji, X., Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery, Adv. Funct. Mater., 2014, vol. 24, pp. 4349–4356. https://doi.org/10.1002/adfm.201304263

    Article  CAS  Google Scholar 

  3. Yaroslavtsev, A.B., Stenina, I.A., Kulova, T.L., Skundin, A.M., and Desyatov, A.V., Nanomaterials for electrical energy storage, Comprehensive Nanoscience and Nanotechnology, Andrews, D. et al., Eds., vol. 5: Application of Nanoscience, Bradshaw, D.S., Ed., Amsterdam: Elsevier, 2019, pp. 165–206.

  4. Wilkening, M., Amade, R., Iwaniak, W., and Heitjans, P., Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 – a comparison of results from solid state NMR and impedance spectroscopy, Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 1239–1246. https://doi.org/10.1039/B616269J

    Article  CAS  PubMed  Google Scholar 

  5. Kashkooli, A.G., Lui, G., Farhad, S., Lee, D.U., Feng, K., Yu, A., and Chen, Z., Nano-particle size effect on the performance of Li4Ti5O12 spinel, Electrochim. Acta, 2016, vol. 196, pp. 33–40. https://doi.org/10.1016/j.electacta.2016.02.153

    Article  CAS  Google Scholar 

  6. Liu, P., Zhu, K., Bian, K., Xu, Y., Zhang, F., Zhang, W., Zhang, J., and Huang, W., 3D hierarchical porous sponge-like V2O5 micro/nano-structures for high-performance Li-ion batteries, J. Alloys Compd., 2018, vol. 765, pp. 901–906. https://doi.org/10.1016/j.jallcom.2018.06.314

    Article  CAS  Google Scholar 

  7. Zhai, J., Lei, Z., Rooney, D., Wang, H., and Sun, K., Self-templated fabrication of micro/nano structured iron fluoride for high performance lithium-ion batteries, J. Power Sources, 2018, vol. 396, pp. 371–378. https://doi.org/10.1016/j.jpowsour.2018.06.048

    Article  CAS  Google Scholar 

  8. Park, J.S., Baek, S.-H., Jeong, Y.-I., Noh, B.-Y., and Kim, J.H., Effects of a dopant on the electrochemical properties of Li4Ti5O12 as a lithium-ion battery anode material, J. Power Sources, 2013, vol. 244, pp. 527–531. https://doi.org/10.1016/j.jpowsour.2013.02.048

    Article  CAS  Google Scholar 

  9. Fang, M., Yao, X., Li, W., Li, Y., Shui, M., and Shu, J., The investigation of lithium doping perovskite oxide LiMnO3 as possible LIB anode material, Ceram. Int., 2018, vol. 44, pp. 8223–8231. https://doi.org/10.1016/j.ceramint.2018.02.002

    Article  CAS  Google Scholar 

  10. Zhou, T.P., Feng, X.Y., Guo, X., Wu, W.W., Cheng, S., and Xiang, H.F., Solid-state synthesis and electrochemical performance of Ce-doped Li4Ti5O12 anode materials for lithium-ion batteries, Electrochim. Acta, 2015, vol. 174, no. 20, pp. 369–375. https://doi.org/10.1016/j.electacta.2015.06.021

    Article  CAS  Google Scholar 

  11. Novikova, S., Yaroslavtsev, S., Rusakov, V., Kulova, T., Skundin, A., and Yaroslavtsev, A., LiFe1–x \({\text{M}}_{x}^{{{\text{II}}}}\)PO4/C (MII = Co, Ni, Mg) as cathode materials for lithium-ion batteries, Electrochim. Acta, 2014, vol. 122, pp. 180–186. https://doi.org/10.1016/j.electacta.2013.08.118

    Article  CAS  Google Scholar 

  12. Kulova, T.L., Kreshchenova, Y.M., Kuz’mina, A.A., Skundin, A.M., Stenina, I.A., and Yaroslavtsev, A.B., New high-capacity anode materials based on gallium-doped lithium titanate, Mendeleev Commun., 2016, vol. 26, no. 4, pp. 238–239. https://doi.org/10.1016/j.mencom.2016.05.005

    Article  CAS  Google Scholar 

  13. Ren, Y., Lu, P., Huang, X., Zhou, S., Chen, Y., Liu, B., Chu, F., and Ding, J., In-situ synthesis of nano-Li4Ti5O12/C composite as an anode material for Li-ion batteries, Solid State Ionics, 2015, vol. 274, pp. 83–87. https://doi.org/10.1016/j.ssi.2015.02.016

    Article  CAS  Google Scholar 

  14. Xu, X., Ai, Q., Pan, L., Ma, X., Zhai, W., An, Y., Hou, G., Chen, J., Zhang, L., Si, P., Lou, J., Feng, J., and Ci, L., Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries, Electrochim. Acta, 2018, vol. 276, pp. 325–332. https://doi.org/10.1016/j.electacta.2018.04.208

    Article  CAS  Google Scholar 

  15. Zuo, D., Tian, G., Li, X., Chen, D., and Shu, K., Recent progress in surface coating of cathode materials for lithium ion secondary batteries, J. Alloys Compd., 2017, vol. 706, pp. 24–40. https://doi.org/10.1016/j.jallcom.2017.02.230

    Article  CAS  Google Scholar 

  16. Zhang, C., Zhang, Y., Wang, J., Wang, D., and Xia, Y., Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery, J. Power Sources, 2013, vol. 236, pp. 118–125. https://doi.org/10.1016/j.jpowsour.2013.01.135

    Article  CAS  Google Scholar 

  17. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., High grain boundary density Li4Ti5O12/ anatase-TiO2 nanocomposites as anode material for Li-ion batteries, Mater. Res. Bull., 2016, vol. 75, pp. 178–184. https://doi.org/10.1016/j.materresbull.2015.11.050

    Article  CAS  Google Scholar 

  18. Yi, T.-F., Yang, S.-Y., Zhu, Y.-R., Ye, M.-F., Xie, Y., and Zhu, R.-S., Enhanced rate performance of Li4Ti5O12 anode material by ethanol-assisted hydrothermal synthesis for lithium-ion battery, Ceram. Int., 2014, vol. 40, no. 7, pp. 9853–9858. https://doi.org/10.1016/j.ceramint.2014.02.077

    Article  CAS  Google Scholar 

  19. Feng, X., Zou, H., Xiang, H., Guo, X., Zhou, T., Wu, Y., Xu, W., Yan, P., Wang, C., Zhang, J.-G., and Yu, Y., Ultrathin Li4Ti5O12 nanosheets as anode materials for lithium and sodium storage, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 26, pp. 16 718–16 726. https://doi.org/10.1021/acsami.6b04752

  20. Zukalová, M., Fabián, M., Klusáčková, M., Klementová, M., Lásková, B.P., Danková, Z., Senna, M., and Kavan, L., Li insertion into Li4Ti5O12 spinel prepared by low temperature solid state route: charge capability vs surface area, Electrochim. Acta, 2018, vol. 265, pp. 480–487. https://doi.org/10.1016/j.electacta.2018.01.171

    Article  CAS  Google Scholar 

  21. Han, S.-W., Ryu, J.H., Jeong, J., and Yoon, D.-H., Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications, J. Alloys Compd., 2013, vol. 570, pp. 144–149. https://doi.org/10.1016/j.jallcom.2013.03.203

    Article  CAS  Google Scholar 

  22. Zhang, Y., Hu, X., Xu, Y., and Chen, C., Preparation and electrochemical properties of Li4Ti5O12/C anode material by facile solid-state reaction, Solid State Ionics, 2015, vol. 276, pp. 18–25. https://doi.org/10.1016/j.ssi.2015.03.033

    Article  CAS  Google Scholar 

  23. Shen, L., Li, H., Uchaker, E., Zhang, X., and Cao, G., General strategy for designing core–shell nanostructured materials for high-power lithium ion batteries, Nano Lett., 2012, vol. 12, pp. 5673–5678.

    Article  CAS  PubMed  Google Scholar 

  24. Li, X., Hu, H., Huang, S., Yu, G., Gao, L., Liu, H., and Yu, Y., Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: the effect of precursor size and morphology, Electrochim. Acta, 2013, vol. 112, pp. 356–363. https://doi.org/10.1016/j.electacta.2013.08.162

    Article  CAS  Google Scholar 

  25. Zhong, J.B., Li, J.Z., Feng, F., Huang, S.G., and Zeng, J., CTAB-assisted fabrication of TiO2 with improved photocatalytic performance, Mater. Lett., 2013, vol. 100, pp. 195–197. https://doi.org/10.1016/j.matlet.2013.03.030

    Article  CAS  Google Scholar 

  26. Tsai, S.-H. and Yang, Y.-C., Synthesis of the mesoporous TiO2 array for hydroxyapatite precipitation, Surf. Coat. Technol., 2013, vol. 231, pp. 578–582. https://doi.org/10.1016/j.surfcoat.2012.11.017

    Article  CAS  Google Scholar 

  27. Zheng, Z., Wang, Y., Zhang, A., Zhang, T., Cheng, F., Tao, Z., and Chen, J., Porous Li4Ti5O12/C nanocomposite as the cathode material of lithium-ion batteries, J. Power Sources, 2012, vol. 198, pp. 229–235. https://doi.org/10.1016/j.jpowsour.2011.09.066

    Article  CAS  Google Scholar 

  28. Stenina, I.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Effects of carbon coating from sucrose and PVDF on electrochemical performance of Li4Ti5O12/C composites in different potential ranges, J. Solid State Electrochem., 2018, vol. 22, pp. 2631–2639. https://doi.org/10.1007/s10008-018-3978-z

    Article  CAS  Google Scholar 

  29. Doeff, M.M., Hu, Y.Q., McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett., 2003, vol. 6, pp. A207–A209. https://doi.org/10.1149/1.1601372

    Article  CAS  Google Scholar 

  30. Vidano, R.P., Fishbach, D.B., Willis, L.J., and Loehr, T.M., Observation of Raman band shifting with excitation wavelength for carbons and graphites, Solid State Commun., 1981, vol. 39, no. 2, pp. 341–344. https://doi.org/10.1016/0038-1098(81)90686-4

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The scanning electron microscopy was performed used shared experimental facilities supported by IGIC RAS state assignment.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 16-29-05241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Sobolev, A.N., Kuz’mina, A.A. et al. Effect of the Carbon Source on the Electrochemical Properties of Li4Ti5O12/C Composites Prepared by Solid-State Synthesis. Inorg Mater 55, 803–809 (2019). https://doi.org/10.1134/S0020168519080156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519080156

Keywords:

Navigation