Inorganic Materials

, Volume 55, Issue 4, pp 331–336 | Cite as

Formation of Metallic and Carbide Phases via Codecomposition of [NiEn3]WO4 and Lithium Hydride in the Range 410–1060°C

  • S. A. GromilovEmail author
  • E. Yu. Gerasimov
  • R. E. Nikolaev


The formation of metallic and carbide phases during the thermal decomposition of a mixture of the coordination compound [NiEn3]WO4 (En = ethylenediamine) and LiH in a He atmosphere has been studied by X-ray diffraction. The results demonstrate that heat treatment of the mixture at 410°C for 10 min leads to the formation of a Ni(Cx) interstitial solid solution based on the HCP Ni lattice and a W1 –xNix substitutional solid solution based on the BCC W lattice. Starting at 510°C, a Ni1 –xWx solid solution based on the FCC Ni lattice is also formed. The double carbide Ni2W4Cx appears at 660°C, and Ni6W6Cx forms at 860°C. Under similar conditions (700°C, He), the thermal decomposition of a mixture of NiWO4 and LiH leads to the formation of W and an FCC Ni1 –xWx (x ~ 0.12) solid solution.


coordination compound ethylenediamine nickel tungstate anion thermal decomposition high-resolution transmission electron microscopy double carbides 



We are grateful to S.P. Khranenko, Candidate of Chemistry, for providing the [NiEn3]WO4 samples.


  1. 1.
    Gromilov, S.A., Korenev, S.V., Baidina, I.A., Korolkov, I.V., and Yusenko, K.V., Syntheses of [Rh(NH3)5Cl][MCl6] (M = Re, Os, Ir) and investigation of their thermolysis products. crystal structure of [Rh(NH3)5Cl][OsCl6], J. Struct. Chem., 2002, vol. 43, no. 3, pp. 488–494.CrossRefGoogle Scholar
  2. 2.
    Korenev, S.V., Venediktov, A.B., Shubin, Yu.V., Yusenko, K.V., and Gromilov, S.A., Synthesis and structure of binary complexes of platinum group metals—precursors of metallic materials, J. Struct. Chem., 2003, vol. 44, no. 1, pp. 46–59.CrossRefGoogle Scholar
  3. 3.
    Korenev, S.V., Gromilov, S.A., Gubanov, A.I., and Venediktov, A.B., [Pd(NH3)4][Ir0.5Os0.5Cl6] solid solution: synthesis and properties, Russ. J. Coord. Chem., 2003, vol. 29, no. 3, pp. 219–221.CrossRefGoogle Scholar
  4. 4.
    Yusenko, K.V., Gromilov, S.A., Baidina, I.A., Korol’kov, I.V., Zhivonitko, V.V., Venediktov, A.B., and Korenev, S.V., crystal structure of [M(NH3)5Cl]2[IrCl6]Cl2 (M = Co, Rh, Ir) binary complex salts, J. Struct. Chem., 2003, vol. 44, no. 1, pp. 60–67.CrossRefGoogle Scholar
  5. 5.
    Yusenko, K.V., Gromilov, S.A., Korol’kov, I.V., Baidina, I.A., Romanenko, G.V., and Korenev, S.V., Double complex salts [Rh(NH3)5Cl]2[MCl6]Cl2 (M = Re, Os): synthesis and crystal structure, Russ. J. Inorg. Chem., 2004, vol. 49, no. 4, pp. 511–516.Google Scholar
  6. 6.
    Yusenko, K.V., Riva, S., Carvalho, P., Arnaboldi, S., Sukhikh, A.S., Hanfland, M., and Gromilov, S.A., First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation, Scr. Mater., 2017, vol. 138, pp. 22–27.CrossRefGoogle Scholar
  7. 7.
    Khranenko, S.P., Komarov, V.Yu., Gerasimov, E.Yu., Zadesenets, A.V., Maksimovsky, E.A., and Gromilov, S.A., [NiEn 3]CrO4: structure, thermal properties, and pseudomorphism, J. Struct. Chem., 2017, vol. 58, no. 7, pp. 1448–1452.CrossRefGoogle Scholar
  8. 8.
    Gromilov, S.A., Gerasimov, E.Yu., Khranenko, S.P., Komarov, V.Yu., and Zadesenets, A.V., [ZnEn 3]CrO4 as a precursor of zinc chromite spinel, J. Struct. Chem., 2017, vol. 58, no. 7, pp. 1443–1447.CrossRefGoogle Scholar
  9. 9.
    Gromilov, S.A., Khranenko, S.P., Semitut, E.Yu., Kireenko, I.B., and Kinelovskii, S.A., Producing superhard coatings by decomposition of complex salts in shaped-charge explosion, Combustion Explosion Shock Waves, 2013, vol. 49, no. 2, pp. 238–243.CrossRefGoogle Scholar
  10. 10.
    Kuratieva, N.V., Tereshkin, I.O., Khranenko, S.P., and Gromilov, S.A., Crystal structure of [CoEn 3]2(W7O24) · 6H2O, J. Struct. Chem., 2013, vol. 54, no. 6, pp. 1133–1136.CrossRefGoogle Scholar
  11. 11.
    Lebukhova, N.V. and Karpovich, N.F., Carbothermic reduction of cobalt and nickel tungstates, Inorg. Mater., 2006, vol. 42, no. 3, pp. 310–315.CrossRefGoogle Scholar
  12. 12.
    Kamarzin, A.A., Osadchaya, L.I., Sokolov, V.V., Trushnikova, L.N., Zubareva, A.P., Saprykin, A.I., and Troitskii, D.I., Preparation of metallic terbium and terbium hydride, Inorg. Mater., 2000, vol. 36 no. 9, pp. 874–876.CrossRefGoogle Scholar
  13. 13.
    Sokolov, V.V., Osadchaya, L.I., Petrii, O.A., Safonova, T.Y., Verbetskii, V.N., and Zotov, T.A., Electrochemical behavior of intermetallic compounds of the type AB5 synthesized during the reduction of a mixture of oxides and salts by lithium hydride, Russ, J. Electrochem., 2002, vol. 38, no. 11, pp. 1260–1262.CrossRefGoogle Scholar
  14. 14.
    Sokolov, V.V., Osadchaya, L.I., Galkin, P.S., Zelenin, Ju.M., Stonoga, Yu.A., and Zubareva, A.P., Synthesis of intermetallic compounds by using lithium hydride, J. Rare Earths, 2002, vol. 20, pp. 257–258.Google Scholar
  15. 15.
    Khranenko, S.P., Sukhikh, A.S., Pishchur, D.P., Buneeva, P.S., Komarov, V.Yu., and Gromilov, S.A., [NiEn 3]WO4. Crystallostructural features of phase transition at 269 K, J. Struct. Chem., 2018, vol. 59, no. 8, pp. 1897–1902.CrossRefGoogle Scholar
  16. 16.
    Gibner, Ya. and Vasilyeva, I., Rapid heating in high-temperature thermo-microscopic analysis, J. Therm. Anal., 1998, vol. 53, pp. 151–160.CrossRefGoogle Scholar
  17. 17.
    Gromilov, S.A., Nikolaev, R.E., and Cherepanova, S.V., Formation of compressed and mixed-layered graphite on heating impact diamonds, J. Struct. Chem., 2018, vol. 59, no. 2, pp. 355–364.Google Scholar
  18. 18.
    Panchenko, A.V., Tolstykh, N.D., and Gromilov, S.A., The technique of X-ray diffraction investigation of crystal aggregates, J. Struct. Chem., 2014, vol. 55, no. 7, pp. 1209–1214.CrossRefGoogle Scholar
  19. 19.
    Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustovarov, V., Gromilov, S., Panchenko, A., Pokhilenko, N., and Litasov, K., Luminescence of natural carbon nanomaterial: impact diamonds from the Popigai crater, Diamond Relat. Mater., 2015, vol. 58, pp. 69–77.CrossRefGoogle Scholar
  20. 20.
    Rodriguez-Navarro, A., XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction, J. Appl. Crystallogr., 2006, vol. 39, no. 6, pp. 905–909.CrossRefGoogle Scholar
  21. 21.
    Prescher, C. and Prakapenka, V.B., DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration, High Pressure Res., 2015, vol. 35, no. 3, pp. 223–230.CrossRefGoogle Scholar
  22. 22.
    Powder Diffraction File, PDF-2/Release 2009, International Centre for Diffraction Data, 2009.Google Scholar
  23. 23.
    Kraus, W. and Nolze, G., POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, no. 3, pp. 301–303.CrossRefGoogle Scholar
  24. 24.
    Inorganic Crystal Structure Database, release 2017, Karlsruhe: Fashinformationszentrum, 2017.Google Scholar
  25. 25.
    Bolokang, A.S. and Phasha, M.J., Novel synthesis of metastable HCP nickel by water quenching, Mater. Lett., 2011, vol. 65, pp. 59–60.CrossRefGoogle Scholar
  26. 26.
    Hansen, M. and Anderko, K., Constitution of Binary Alloys, New-York: McGraw-Hill, 1958.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Gromilov
    • 1
    • 2
    Email author
  • E. Yu. Gerasimov
    • 2
    • 3
  • R. E. Nikolaev
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirsk, 630090 Russia
  3. 3.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations