Advertisement

Inorganic Materials

, Volume 54, Issue 15, pp 1517–1522 | Cite as

Distribution of Stresses and Deformations in the Deformed Metal Volume at Indenting of a Spherical Indenter

  • V. M. MatyuninEmail author
  • A. G. KazantsevEmail author
  • A. Yu. Marchenkov
MECHANICS OF MATERIALS: STRENGTH, RESOURCE, AND SAFETY
  • 6 Downloads

Abstract

In this paper, we studied the distribution of stresses and deformations in a deformed metal under the indents obtained by indentation of a spherical indenter with a different degree of loading. For this purpose, the hardness method and the finite element method are used. These methods are shown to complement each other and their combined use gives more complete information on the values of stresses and strains in various zones of the deformed metal volume.

Keywords:

spherical indenter indentation stress intensity deformation intensity hydrostatic core deformed volume hardness finite element method 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 15-19-00166, and performed at the National Research University MPEI.

REFERENCES

  1. 1.
    Johnson, K.L., Contact Mechanics, Cambridge: Cambridge Univ. Press, 1985.CrossRefGoogle Scholar
  2. 2.
    Giannakopoulos, A.E. and Suresh, S., Determination of elastoplastic properties by instrumented sharp indentation, Scr. Mater., 1999, vol. 40, no. 10, pp. 1191–1198.CrossRefGoogle Scholar
  3. 3.
    Savitskii, F.S., Vandyshev, B.A., and Yakutovich, M.V., Plastic strain distribution around the conical indent, Zavod. Lab., 1948, vol. 14, no. 12, pp. 1476–1479.Google Scholar
  4. 4.
    Markovets, M.P., Compilation of stress-strain diagrams of real stresses using the hardness values and technological sample test, Zh. Tekh. Fiz., 1949, vol. 19, no. 3, pp. 371–382.Google Scholar
  5. 5.
    Oka, Y.I., Matsumura, M., and Funaki, H., Measurements of plastic strain below an indentation and piling-up between two adjacent, Wear, 1995, vols. 186–187, part 1, pp. 50–55.Google Scholar
  6. 6.
    Del’, G.D., Opredelenie napryazhenii v plasticheskoi oblasti po raspredeleniyu tverdosti (Determination of Stresses in Plastic Area Using the Hardness Method), Moscow: Mashinostroenie, 1971.Google Scholar
  7. 7.
    Chaudhri, M.M., Subsurface plastic strain distribution around spherical indentations in metals, Philos. Mag. A, 1996, vol. 74, no. 5, pp. 1213–1224.CrossRefGoogle Scholar
  8. 8.
    Matyunin, V.M., Indentirovanie v diagnostike mekhanicheskikh svoistv materialov (Use the Indentation in Diagnostics of Mechanical Properties of Material), Moscow: Mosk. Energ. Inst., 2015.Google Scholar
  9. 9.
    Chaudhri, M.M., Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper, Scr. Mater., 1998, vol. 46, no. 9, pp. 3047–3056.Google Scholar
  10. 10.
    Chaudhri, M.M., Subsurface deformation patterns around indentations in work-hardened mild-steel, Philos. Mag. Lett., 1993, vol. 67, pp. 107–115.CrossRefGoogle Scholar
  11. 11.
    Ludwig, P. and Scheu, R., Vergleichende Zug-, Druck- und Walzversuche, Stahl Eisen, 1925, vol. 45, pp. 373–381.Google Scholar
  12. 12.
    Bakirov, M.B., Zaitsev, M.A., and Frolov, I.V., Elastic half-space spherical indentation process CAD simulation, Zavod. Lab., Diagn. Mater., 2001, vol. 67, no. 1, pp. 37–47.Google Scholar
  13. 13.
    Cheng, Y. and Li, Z., Hardness obtained from conical indentations with various cone angles, J. Mater. Res., 2000, vol. 15, no. 12, pp. 2830–2835.CrossRefGoogle Scholar
  14. 14.
    Nolan, G., Scale effects in microindentation of ductile crystals, MSc Thesis, Boston: Mass. Inst. Technol., 2000.Google Scholar
  15. 15.
    Koeppel, B.J. and Subhash, G., Characteristics of residual plastic zone under static and dynamic Vickers indentations, Wear, 1999, vol. 224, no. 1, pp. 56–67.CrossRefGoogle Scholar
  16. 16.
    Mesarovic, S.J. and Fleck, N.A., Spherical indentation of elastic-plastic solids, Proc. R. Soc. A, 1999, vol. 455, no. 1987, pp. 2707–2728.Google Scholar
  17. 17.
    Biwa, S. and Storakers, B., An analysis of fully plastic Brinell, J. Mech. Phys. Solids, 1995, vol. 43, no. 8, pp. 1303–1333.CrossRefGoogle Scholar
  18. 18.
    Demiral, M., Roy, A., El Sayed, T., and Silberschmidt, V.V., Influence of strain gradients on lattice rotation in nano-indentation experiments: a numerical study, Mater. Sci. Eng. A, 2014, vol. 608, pp. 73–81.CrossRefGoogle Scholar
  19. 19.
    Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, A., Wright, A., Bahr, D., and Gerberich, W., Yield strength predictions from the plastic zone around nanocontacts, Acta Mater., 1998, vol. 47, no. 1, pp. 333–343.CrossRefGoogle Scholar
  20. 20.
    Matyunin, V.M., Dubov, A.A., and Marchenkov, A.Yu., Scale factor in determining the hardness of metal materials, Inorg. Mater., 2010, vol. 46, no. 15, pp. 1692–1695.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National Research University MPEIMoscowRussia
  2. 2.JSC TsNIITMAShMoscowRussia

Personalised recommendations