Inorganic Materials

, Volume 54, Issue 15, pp 1483–1486 | Cite as

Dielectric and Piezoelectric Properties of Composite Poly(vinylidene fluoride-trifluoroethylene) Copolymer with Carbon Nanotubes

  • D. A. KiselevEmail author
  • M. V. Silibin
  • A. V. Solnyshkin
  • A. V. Sysa
  • I. K. Bdikin


Film samples of poly(vinylidene fluoride-trifluoroethylene) copolymer containing 2% of carbon nanotubes were synthesized. The temperatures of the ferroelectric phase transition and the value of permittivity at the frequency of 1 MHz were determined. The surface was visualized using scanning probe microscopy; the values of the effective piezoelectric coefficient were obtained. It was shown that incorporation of carbon nanotubes into the polymer matrix improves the values of the permittivity and piezoelectric coefficient of the polymer.


copolymer carbon nanotubes permittivity piezoelectric coefficient 



This work was supported by the Russian Science Foundation (project no. 16-19-10112).


  1. 1.
    Tayi, A.S. et al., Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes, Nature, 2012, vol. 488, no. 7412, pp. 485–489.CrossRefGoogle Scholar
  2. 2.
    Zhang, G. et al., Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration, Adv. Mater., 2015, vol. 27, no. 8, pp. 1450–1454.CrossRefGoogle Scholar
  3. 3.
    Heredia, A. et al., Nanoscale ferroelectricity in crystalline γ-glycine, Adv. Funct. Mater., 2012, vol. 22, no. 14, pp. 2996–3003.CrossRefGoogle Scholar
  4. 4.
    Rahman, M.A. et al., Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites, Smart Mater. Struct., 2013, vol. 22, no. 8, art. ID 085017.CrossRefGoogle Scholar
  5. 5.
    Heredia, A. et al., Preferred deposition of phospholipids onto ferroelectric P (VDF-TrFE) films via polarization patterning, J. Phys. D: Appl. Phys., 2010, vol. 43, no. 33, p. 335301.CrossRefGoogle Scholar
  6. 6.
    Chae, S.H. and Lee, Y.H., Carbon nanotubes and graphene towards soft electronics, Nano Convergence, 2014, vol. 1, no. 1, pp. 1–26.CrossRefGoogle Scholar
  7. 7.
    Geim, A.K., Graphene: status and prospects, Science, 2009, vol. 324, no. 5934, pp. 1530–1534.CrossRefGoogle Scholar
  8. 8.
    Chen, D. et al., Electromagnetic and microwave absorbing properties of RGO@hematite core–shell nanostructure/PVDF composites, Compos. Sci. Technol., 2014, vol. 102, pp. 126–131.CrossRefGoogle Scholar
  9. 9.
    Bhattacharya, M., Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers, Materials, 2016, vol. 9, no. 4, p. 262.CrossRefGoogle Scholar
  10. 10.
    Guan, X. et al., PZT/PVDF composites doped with carbon nanotubes, Sens. Actuators, A, 2013, vol. 194, pp. 228–231.CrossRefGoogle Scholar
  11. 11.
    Carabineiro, S.A.C., et al., Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites, Nanoscale Res. Lett., 2011, vol. 6, no. 1, pp. 1–5.Google Scholar
  12. 12.
    Layek, R.K. et al., Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation, Polymer, 2010, vol. 51, no. 24, pp. 5846–5856.CrossRefGoogle Scholar
  13. 13.
    Rahman, M.A. and Chung, G.S., Synthesis of PVDF-graphene nanocomposites and their properties, J. Alloys Compd., 2013, vol. 581, pp. 724–730.CrossRefGoogle Scholar
  14. 14.
    Adohi, B.J.P. et al., Measurement of the microwave effective permittivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene, Appl. Phys. Lett., 2014, vol. 104, no. 8, art. ID 082902.CrossRefGoogle Scholar
  15. 15.
    Tsonos, C. et al., Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles, Polymer, 2015, vol. 5, p. 7.Google Scholar
  16. 16.
    Jiang, Z.Y. et al., Enhanced ferroelectric and pyroelectric properties of poly(vinylidene fluoride) with addition of graphene oxides, J. Appl. Phys., 2014, vol. 115, no. 20, p. 204101.CrossRefGoogle Scholar
  17. 17.
    Chiu, K.C. et al., Prominent electric properties of BiFeO3 shells sputtered on ZnO-nanorod cores with LaNiO3 buffer layers, Nanotechnology, 2013, vol. 24, no. 22, p. 225602.CrossRefGoogle Scholar
  18. 18.
    Solnyshkin, A.V. et al., Anomalies of dielectric properties of vinylidene fluoride-trifluoroethylene copolymer films, Phys. Solid State, 2008, vol. 50, no. 3, pp. 562–567.CrossRefGoogle Scholar
  19. 19.
    Solnyshkin, A.V. and Kislova, I.L., Analysis of the Relaxor-like behavior in a ferroelectric copolymer P (VDF-TrFE), Ferroelectrics, 2010, vol. 398, no. 1, pp. 77–84.CrossRefGoogle Scholar
  20. 20.
    Solnyshkin, A.V. et al., Atomic force microscopy study of ferroelectric films of P (VDF-TrFE) copolymer and composites based on it, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2008, vol. 2, no. 5, pp. 692–695.CrossRefGoogle Scholar
  21. 21.
    Rodriguez, B.J. et al., Dual-frequency resonance-tracking atomic force microscopy, Nanotechnology, 2007, vol. 18, no. 47, p. 475504.CrossRefGoogle Scholar
  22. 22.
    Jiang, Z.Y. et al., Formation of piezoelectric β-phase crystallites in poly (vinylidene fluoride)-graphene oxide nanocomposites under uniaxial tensions, J. Phys. D: Appl. Phys., 2015, vol. 48, no. 24, p. 245303.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. A. Kiselev
    • 1
    • 2
    Email author
  • M. V. Silibin
    • 2
  • A. V. Solnyshkin
    • 2
    • 3
  • A. V. Sysa
    • 2
  • I. K. Bdikin
    • 2
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.National Research University of Electronic TechnologyMoscowRussia
  3. 3.Tver State UniversityTverRussia

Personalised recommendations