Advertisement

Inorganic Materials

, Volume 54, Issue 15, pp 1543–1550 | Cite as

Study on Damaging and Fatigue Life of Constructions under Single- and Two-Frequency Loading Modes Based on Deformational and Energy Approaches

  • M. M. GadeninEmail author
MECHANICS OF MATERIALS: STRENGTH, RESOURCE, AND SAFETY
  • 7 Downloads

Abstract

The damage accumulation patterns under one- and two-frequency loading modes were studied on the basis of deformation and energy failure criteria under elastoplastic cyclic deformation. It is demonstrated that the change in fatigue life upon applying a high-frequency component of strains (deformations) to the basic low-cycle process can be determined from the sum of fatigue damage components from basic and applied deformation or the observed coefficient of breaking cycle number decrease, depending on the relations between frequencies and amplitudes of interacting cyclic processes. With regard to this, the components of damage due to cyclic deformations are related to the energy characteristics of the deformation processes studied, including the mechanical energy expended on the deformation process, the thermal energy released (determined by measuring the self-heating temperature change), and also the energy absorbed before the fracture.

Keywords:

elastoplastic cyclic deformation two-frequency mode fatigue life damage deformation criteria self-heating mechanical energy thermal energy absorbed energy criterion energy balance 

Notes

REFERENCES

  1. 1.
    Makhutov, N.A., Konstruktsionnaya prochnost’, resurs i tekhnogennaya bezopasnost’ (Structural Strength, Resource, and Engineering Safety), in 2 parts, Novosibirsk: Nauka, 2005.Google Scholar
  2. 2.
    Makhutov, N.A., Prochnost’ i bezopasnost’: fundamental’nye i prikladnye issledovaniya (Strength and Safety: Fundamental and Applied Studies), Novosibirsk: Nauka, 2008.Google Scholar
  3. 3.
    Bezopasnost’ Rossii. Pravovye, sotsial’no-ekonomicheskie i nauchno tekhnicheskie aspekty. Fundamental’nye issledovaniya problem tekhnogennoi bezopasnosti (Safety of Russia: Legal, Social-Economic, and Scientific-Engineering Sspects. Fundamental Studies in Engineering Safety), Makhutov, N.A., Ed., Moscow: Znanie, 2013.Google Scholar
  4. 4.
    Troshchenko, V.T., Deformirovanie i razrushenie metallov pri mnogotsiklovom nagruzhenii (Deformation and Fracture of Metals at Repeated Loading), Kiev: Naukova Dumka, 1981.Google Scholar
  5. 5.
    Ivanova, V.S. and Terent’ev, V.F., Priroda ustalosti metallov (The Nature of Metal Fatigue), Moscow: Metallurgiya, 1975.Google Scholar
  6. 6.
    Romanov, A.N., Razrushenie pri malotsiklovom nagruzhenii (Fracture at Low Cycle Loading), Moscow: Nauka, 1988.Google Scholar
  7. 7.
    Makhutov, N.A., Rachuk, V.S., Gadenin, M.M., et al., Prochnost’ i resurs ZhRD (Strength and Resource of Liquid-Fuel Rocket Engines), Moscow: Nauka, 2011.Google Scholar
  8. 8.
    Makhutov, N.A., Frolov, K.V., Stekol’nikov, V.V., et al., Prochnost’ i resurs vodo-vodyanykh energeticheskikh reaktorov (Strength and Resource of Water-Cooled Reactors), Moscow: Nauka, 1988.Google Scholar
  9. 9.
    Gadenin, M.M., Deformation and accumulation of deformations due to two-frequency low-cycle lading and higher temperatures, Mashinovedenie, 1976, no. 1, pp. 69–77.Google Scholar
  10. 10.
    Gadenin, M.M., Dynamics resistance due to low-cycle deformation and fracture related to two-frequency loading, XIII Nauchno-tekhnicheskaya konferentsiya “Problemy nadezhnosti i dolgovechnosti elementov konstruktsii v mashinostroenii i stroiindustrii,” Tezisy dokladov (The XIII Sci-Tech. Conf. “Problems of Reliability and Durability of Structural Elements in the Machine Engineering and Construction Industry,” Abstracts of Papers), Sverdlovsk: Sverdlovsk. Obl. Sovet NTO, 1978, pp. 5–6.Google Scholar
  11. 11.
    PNAE G-7-002-86. Pravila i normy v atomnoi energetike. Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok (PNAE G‑7-002-86. Rules and Standards in Nuclear Energetics. Standards of Calculation for Durability of Equipment and Pipelines for Nuclear Power Installations), Moscow: Energoatomizdat, 1989.Google Scholar
  12. 12.
    Gadenin, M.M., Estimation of the effect of loading modes on the conditions of attainment of marginal states and resource assignment, Inorg. Mater., 2014, vol. 50, no. 15, pp. 1537–1542.CrossRefGoogle Scholar
  13. 13.
    Yastrzhembskii, A.S., Tekhnicheskaya termodinamika (Engineering Thermodynamics), Moscow: Gosenergoizdat, 1953.Google Scholar
  14. 14.
    Troshchenko, V.T. and Fomichev, P.A., An energy criterion for fatigue failure, Strength Mater., 1993, vol. 25, no. 1, pp. 1–7.CrossRefGoogle Scholar
  15. 15.
    Gadenin, M.M. and Romanov, A.N., Experimental determination of energy for a static and cyclic elastoplastic deformation and fracture, Zavod. Lab., 1978, vol. 44, no. 8, pp. 997–1002.Google Scholar
  16. 16.
    Romanov, A.N. and Gadenin, M.M., Experimental determination of the static and cyclic elastoplastic strain and fracture energies of structural materials, Strength Mater., 1979, vol. 11, no. 11, pp. 1300–1306.CrossRefGoogle Scholar
  17. 17.
    Troshchenko, V.T., Nonlocalized fatigue damage of metals and alloys. Part 1. Inelasticity, investigation methods, and results, Strength Mater., 2005, vol. 37, no. 4, pp. 337–356.CrossRefGoogle Scholar
  18. 18.
    Troshchenko, V.T., Nonlocalized fatigue damage of metals and alloys. Part 2. Interrelation between fatigue and inelasticity, Strength Mater., 2005, vol. 37, no. 5, pp. 443–459.CrossRefGoogle Scholar
  19. 19.
    Volkov, I.A., Ereev, M.N., Korotkikh, Yu.G., and Tarasov, I.S., The model of damaged medium for evaluation of lifetime of constructions in joint effect of low- and high-cycle fatigue mechanisms, Vychisl. Mekh. Sploshnykh Sred, 2012, vol. 5, no. 1, pp. 54–60.Google Scholar
  20. 20.
    Gol’denblat, I.I., Nelineinye problemy teorii uprugosti (Nonlinear Problems of the Elasticity Theory), Moscow: Nauka, 1969.Google Scholar
  21. 21.
    Gough, H.J., The Fatigue of Metals, London: Scott, Greenwood and Son, 1924.Google Scholar
  22. 22.
    Bridlik, P.M., Koshmarov, Yu.A., and Leont’ev, A.I., Teploperedacha (Heat Transfer), Moscow: Minist. Vyssh. Obraz. SSSR, 1956.Google Scholar
  23. 23.
    Fizicheskie svoistva stalei i splavov, primenyaemykh v energetike. Spravochnik (Physical Properties of Steels and Alloys Used in Power Engineering: Handbook), Neimark, B.E., Ed., Moscow: Energiya, 1967.Google Scholar
  24. 24.
    Bol’shukhin, M.A., Zverev, D.L., Kaidalov, V.B., Korotkikh, Yu.G., Panov, V.A., and Pakhomov, V.A., Evaluation of lifetime of constructional materials under combined effect of low- and high-cycle fatigue, Probl. Prochn. Plast., 2010, no. 72, pp. 28–35.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Mechanical Engineering Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations