Electrical Properties of High-Quality Synthetic Boron-Doped Diamond Single Crystals and Schottky Barrier Diodes on Their Basis
- 19 Downloads
Abstract
The temperature dependences of the specific resistance and Hall coefficient of high-quality synthetic boron-doped diamond single crystals grown via a high-pressure high-temperature method are studied. The concentration of acceptors in the (001) cut plates was varied in a range of 2 × 1015–3 × 1017 cm–3 by varying the concentration of boron in the growth mixture (0.0004–0.04 at %). Thin rectangular plates with the uniform concentration of boron and free from extended structural defects are cut out by a laser after the X-ray topography and mapping of UV luminescence. The concentrations of donors and acceptors in the samples are calculated from the data of the Hall effect and capacitance–voltage characteristics. The obtained results correlate with the concentration of boron in the growth mixture. The minimum compensation ratio of acceptors with donors (below 1%) is observed in the crystals grown with the concentration of boron in the growth mixture of 0.002 at %. The ratio increases when the amount of boron is increased or decreased. The samples grown at such a concentration of boron have the maximum mobility of charge carriers (2200 cm2/(V s) at T = 300 K and 7200 cm2/(V s) at T = 180 K). The phonon scattering of holes dominates throughout the range of temperatures (180–800 K), while the scattering by point defects (neutral and ionized atoms of the impurity) is insignificant. The diamond crystals which are grown from a mixture containing 0.0005–0.002 at % boron and have perfect quality and a lattice mechanism of scattering can be considered as a reference semiconductor.
Keywords:
semiconductor diamond electrical properties Schottky barrier diodeNotes
ACKNOWLEDGMENTS
This work was financially supported by the Ministry of Education and Science of the Russian Federation (project ID RFMEFI59317X0007; the agreement no. 14.593.21.0007); the work was done using the Shared Research Facilities “Research of Nanostructured, Carbon and Superhard Materials” FSBI TISNCM).
REFERENCES
- 1.Polyakov, S.N., Denisov, V.N., Kuzmin, N.V., Kuznetsov, M.S., Martyushov, S.Y., Nosukhin, S.A., Terentiev, S.A., and Blank, V.D., Characterization of top-quality type IIa synthetic diamonds for new x-ray optics, Diamond Relat. Mater., 2011, vol. 20, pp. 726–728.CrossRefGoogle Scholar
- 2.Feve, J.-P.M., Shortoff, K.E., Bohn, M.J., and Brasseur, J.K., High average power diamond Raman laser, Opt. Express, 2011, vol. 19, pp. 913–922.CrossRefGoogle Scholar
- 3.Shvyd’ko, Y., Stoupin, S., Blank, V., and Terentyev, S., Near-100% Bragg reflectivity of x-rays, Nat. Photonics, 2011, vol. 5, pp. 539–542.CrossRefGoogle Scholar
- 4.Blank, V.D., Bormashov, V.S., Tarelkin, S.A., Buga, S.G., Kuznetsov, M.S., Teteruk, D.V., Kornilov, N.V., Terentiev, S.A., and Volkov, A.P., Power high-voltage and fast response Schottky barrier diamond diodes, Diamond Relat. Mater., 2015, vol. 57, pp. 32–36.CrossRefGoogle Scholar
- 5.Tarelkin, S., Bormashov, V., Buga, S., Volkov, A., Teteruk, D., Kornilov, N., Kuznetsov, M., Terentiev, S., Golovanov, A., and Blank, V., Power diamond vertical Schottky barrier diode with 10 A forward current, Phys. Status Solidi A, 2015, vol. 212, pp. 2621–2627.CrossRefGoogle Scholar
- 6.Polyakov, A., Smirnov, N., Tarelkin, S., Govorkov, A., Bormashov, V., Kuznetsov, M., Teteruk, D., Buga, S., Kornilov, N., and Lee, I.-H., Electrical properties of diamond platinum vertical Schottky barrier diodes, Mater. Today: Proc., 2016, vol. 3, pp. S159–S164.CrossRefGoogle Scholar
- 7.Tapper, R.J., Diamond detectors in particle physics, Rep. Prog. Phys., 2000, vol. 63, pp. 1273–1316.CrossRefGoogle Scholar
- 8.Bruzzi, M., Bucciolini, M., Nava, F., Pini, S., and Russo, S., Advanced materials in radiation dosimetry, Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 485, pp. 172–177.Google Scholar
- 9.Bachmair, F., Bäni, L., Bergonzo, P., Caylar, B., Forcolin, G., Haughton, I., Hits, D., Kagan H., Kass, R., Li, L., Oh, A., Phan, S., Pomorski, M., Smith, D.S., Tyzhnevyi, V., et al., A 3D diamond detector for particle tracking, Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 786, pp. 97–104.Google Scholar
- 10.Amosov, V.N., Azizov, E.A., Blank, V.D., Gvozdeva, N.M., Kornilov, N.V., Krasilnikov, A.V., Kuznetsov, M.S., Meshchaninov, S.A., Nosukhin, S.A., Rodionov, N.B., and Terent’ev, S.A., Development of ionizing radiation detectors based on synthetic diamond material for the nuclear power industry, Instrum. Exp. Tech., 2010, vol. 53, pp. 196–203.CrossRefGoogle Scholar
- 11.Bormashov, V., Troschiev, S., Volkov, A., Tarelkin, S., Korostylev, E., Golovanov, A., Kuznetsov, M., Teteruk, D., Kornilov, N., Terentiev, S., Buga, S., and Blank, V., Development of nuclear microbattery prototype based on Schottky barrier diamond diodes, Phys. Status Solidi A, 2015, vol. 212, pp. 2539–2547.CrossRefGoogle Scholar
- 12.Delfaure, C., Pomorski, M., de Sanoit, J., Bergonzo, P., and Saada, S., Single crystal CVD diamond membranes for betavoltaic cells, Appl. Phys. Lett., 2016, vol. 108, art. ID 252105.CrossRefGoogle Scholar
- 13.Thonke, K., The boron acceptor in diamond, Semicond. Sci. Technol., 2003, vol. 18, pp. S20–S26.CrossRefGoogle Scholar
- 14.Pernot, J., Volpe, P.N., Omnès, F., Muret, P., and Teraji, T., Hall hole mobility in boron-doped homoepitaxial diamond, Phys. Rev. B, 2010, vol. 81, art. ID 205203.CrossRefGoogle Scholar
- 15.Prikhodko, D., Tarelkin, S., Bormashov, V., Golovanov, A., Kuznetsov, M., Teteruk, D., Volkov, A., and Buga, S., Thermal conductivity of synthetic boron-doped single-crystal HPHT diamond from 20 to 400 K, MRS Commun., 2016, vol. 6, no. 2, pp. 71–76.CrossRefGoogle Scholar
- 16.Wentorf, R.H., Some studies of diamond growth rates, J. Phys. Chem., 1971, vol. 75, pp. 1833–1837.CrossRefGoogle Scholar
- 17.Achard, J., Tallaire, A., Sussmann, R., Silva, F., and Gicquel, A., The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD, J. Cryst. Growth, 2005, vol. 284, pp. 396–405.CrossRefGoogle Scholar
- 18.Barjon, J., Chikoidze, E., Jomard, F., Dumont, Y., Pinault-Thaury, M.-A., Issaoui, R., Brinza, O., Achard, J., and Silva, F., Homoepitaxial boron-doped diamond with very low compensation, Phys. Status Solidi A, 2012, vol. 209, pp. 1750–1753.CrossRefGoogle Scholar
- 19.Wentorf, R.H. and Bovenkerk, H.P., Preparation of semiconducting diamonds, J. Chem. Phys., 1962, vol. 36, no. 1987.Google Scholar
- 20.Blank, V.D., Kuznetsov, M.S., Nosukhin, S.A., Terentiev, S.A., and Denisov, V.N., The influence of crystallization temperature and boron concentration in growth environment on its distribution in growth sectors of type IIb diamond, Diamond Relat. Mater., 2007, vol. 16, pp. 800–804.CrossRefGoogle Scholar
- 21.van der Pauw, L.J., A method of measuring specific resistivity and Hall Effect of discs of arbitrary shape, Philips Res. Rep., 1958, vol. 13, pp. 1–9.Google Scholar
- 22.Schroder, D.K., Semiconductor Material and Device Characterization, New York: Wiley, 2006.Google Scholar
- 23.Mamin, R. and Inushima, T., Conductivity in boron-doped diamond, Phys. Rev. B, 2001, vol. 63.Google Scholar
- 24.Denisov, V.N., Mavrin, B.N., Polyakov, S.N., Kuznetsov, M.S., Terentiev, S.A., and Blank, V.D., First observation of electronic structure of the even parity boron acceptor states in diamond, Phys. Lett. A, 2012, vol. 376, pp. 2812–2815.CrossRefGoogle Scholar
- 25.Teteruk, D.V., Tarelkin, S.A., Bormashov, V.S., Volkov, A.P., Kornilov, N.V., and Terent’ev, S.A., Doping of a diamond grown by chemical vapor deposition, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2014, vol. 57, pp. 56–58.Google Scholar