Inorganic Materials

, Volume 54, Issue 14, pp 1397–1406 | Cite as

Contemporary Methods of Detecting Heavy Metals in Waste Waters (Review)

  • O. A. Dal’novaEmail author
  • G. I. Bebeshko
  • V. V. Es’kina
  • V. B. Baranovskaya
  • Yu. A. Karpov


The necessity of monitoring the quality of waste waters and their specific features require the presence, development, and improvement of an instrumental analytic base, as well as the implementation of methods of detecting pollutants, including heavy metals. This review article characterizes methods of elemental atomic absorption, optical emission, and mass-spectral ecoanalytical monitoring of waste waters, which are of greatest practical interest. Particular attention is paid to methods using operations on separating and concentrating trace heavy metals.


waste waters sorption separation concentration extraction toxic elements metals atomic absorption spectrometry optical emission spectrometry mass spectrometry 



This study was supported by the Russian Foundation for Basic Research (grant no. 16-03-00843) and Increase Competitiveness Program of MISiS (no. P02-2017-2-7).


  1. 1.
    Akinin, N.I., Promyshlennaya ekologiya. Printsipy, podkhody, tekhnicheskie resheniya (Industrial Ecology: Principles, Approaches, and Technical Solutions), Dolgoprudnyi: Intellekt, 2011.Google Scholar
  2. 2.
    Danilovich, D.A. and Dovlatova, E.V., Proposals to change the legislative framework of rationing of water utilities and their customers wastewater discharges, Vodosnabzh. Sanit. Tekh., 2012, no. 10, pp. 5–9.Google Scholar
  3. 3.
    Kutseva, N.K., Kartashova, A.V., and Chamaev, A.V., Water quality standards: the analyst’s view, Metody Otsenki Sootvetstviya, 2012, no. 3, pp. 4–9.Google Scholar
  4. 4.
    Gnipov, A.V., Mazaev, V.T., and Khromchenko, Ya.L., About the control of drinking water quality and composition of the wastewater in the new regulations, Vodosnabzh. Sanit. Tekh., 2015, no. 4, pp. 4–11.Google Scholar
  5. 5.
    Moore, J.W. and Ramamoorthy, S., Heavy Metals in Natural Waters. Applied Monitoring and Impact Assessment, New York: Springer-Verlag, 1984.CrossRefGoogle Scholar
  6. 6.
    Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), Moscow: Nauka, 1994, book 1, pp. 16–17.Google Scholar
  7. 7.
    Yusfin, Yu.S., Leont’ev, L.I., and Chernousov, P.I., Promyshlennost’ i okruzhayushchaya sreda (Industry and Environment), Moscow: Akademkniga, 2002.Google Scholar
  8. 8.
    Gron’, V.A., Korostovenko, V.V., and Kaplichenko, N.M., Monitoring of pollution of the hydrosphere by metallurgical enterprise, Mezhdunar. Zh. Eksp. Obraz., 2013, no. 10-2, pp. 309–311.Google Scholar
  9. 9.
    PND F 14.1:2.214-06 (FR.1.31.2007.03809). Kolichestvennyi khimicheskii analiz vod. Metodika vypolneniya izmerenii massovoi kontsentratsii zheleza, kadmiya, kobal’ta, margantsa, nikelya, medi, khroma i svintsa v probakh prirodnykh i stochnykh vod metodom plamennoi atomno-absorbtsionnoi spektrometrii (PND F 14.1:2.214-06 (FR.1.31.2007.03809). Quantitative Chemical Analysis of Water. Methods for Measuring the Mass Concentration of Iron, Cadmium, Cobalt, Manganese, Nickel, Copper, Zinc, Chromium, and Lead in Samples of Natural and Waste Waters by Flame Atomic Absorption Spectrophotometry), Moscow, 2006.Google Scholar
  10. 10.
    PND F 14.1:2.4.253-09. Method for Determination of Mass Concentration of Aluminum, Barium, Beryllium, Vanadium, Cadmium, Cobalt, Manganese, Copper, Molybdenum, Arsenic, Nickel, Lead, Selenium, Silver, Strontium, Titanium, Chromium, Zinc in the Samples of Natural and Waste Waters by Atomic Absorption Spectrometry with Graphite Furnace Atomization Using Atomic Absorption Spectrometry Modifications MGA-915, 915M, 915 MD, St. Petersburg, 2009Google Scholar
  11. 11.
    Zolotov, Yu.A., Tsizin, G.I., Dmitrienko, S.G., and Morosanova, E.I., Sorbtsionnoe kontsentrirovanie mikrokomponentov iz rastvorov. Primenenie v neorganicheskom analize (Sorption Concentration of Microcomponents from Solutions: Implementation in Inorganic Analysis), Moscow: Nauka, 2010.Google Scholar
  12. 12.
    Yilmaz, V. and Kartal, S., Determination of some trace metals by FAAS after solid-phase extraction with amberlite XAD-1180/TAN chelating resin, Anal. Sci., 2012, vol. 28, no. 5, pp. 515–21.CrossRefGoogle Scholar
  13. 13.
    Sert, R., Hol, A., Kartal, A.A., et al., Simultaneous solid phase chelate extraction for ultratrace determination of copper, nickel, and zinc by microsample injection system coupled flame atomic absorption spectrometry, Anal. Lett., 2013, vol. 46, no. 16, pp. 2570–2582.CrossRefGoogle Scholar
  14. 14.
    Mori, M., Suzuki, T., Sugita, Ts., et al., Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry, Anal. Chim. Acta, 2014, vol. 840, pp. 42–48.CrossRefGoogle Scholar
  15. 15.
    Meng, L., Chen, C., and Yang, Y., Suspension dispersive solid phase extraction for preconcentration and determination of cobalt, copper, and nickel in environmental water by flame atomic absorption spectrometry, Anal. Lett., 2015, vol. 48, no. 3, pp. 453–463.CrossRefGoogle Scholar
  16. 16.
    Shemshadi, R.Sh., Zeinalov, N.A., Efendiev, A.A., et al., Determination of cadmium and zinc in waters by flame atomic absorption spectrometry after cloud-point extraction, J. Anal. Chem., 2012, vol. 67, no. 6, pp. 577–580.CrossRefGoogle Scholar
  17. 17.
    Babuev, M.A., Basargin, N.N., Arslanbeikov, R.Kh., et al., Sorption-atomic-absorption determination of cadmium (II) in natural waters, Zavod. Lab., Diagn. Mater., 2011, vol. 77, no. 8, pp. 3–5.Google Scholar
  18. 18.
    Anthemidis, A.N. and Paschalidou, M., Unmodified multi-walled carbon nanotubes as sorbent material in flow injection on-line sorbent extraction preconcentration system for cadmium determination by flame atomic spectrometry, Anal. Lett., 2012, vol. 45, no. 9, pp. 1098–1110.CrossRefGoogle Scholar
  19. 19.
    Doroshchuk, V.A. and Kulichenko, S.A., Preconcentration of cadmium with OP-10 nonionic surfactant phases at the cloud point, J. Anal. Chem., 2005, vol. 60, no. 5, pp. 400–403.CrossRefGoogle Scholar
  20. 20.
    Hazer, O. and Demir, D., Speciation of chromium in water samples by solid-phase extraction on a new synthesized adsorbent, Anal. Sci., 2013, vol. 29, no. 7, pp. 29–34.CrossRefGoogle Scholar
  21. 21.
    Baig, J., Hol, A., Akdogan, A., et al., A novel strategy for chromium speciation at ultra-trace level by microsample injection flame atomic absorption spectrophotometry, J. Anal. At. Spectrom., 2012, vol. 27, no. 9, pp. 1509–1517.CrossRefGoogle Scholar
  22. 22.
    Shah, F., Soylak, M., Kazi, T.G., and Afridi, H.I., Preconcentration of lead from aqueous solution with activated carbon cloth prior to analysis by flame atomic absorption spectrometry: A multivariate study, J. Anal. At. Spectrom., 2013, vol. 28, no. 4, pp. 601–605.CrossRefGoogle Scholar
  23. 23.
    Bai, H., Zhou, Q., Xie, G., and Xiao, J., Temperature-controlled ionic liquid–liquid-phase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry, Talanta, 2010, vol. 80, no. 5, pp. 1638–1642.CrossRefGoogle Scholar
  24. 24.
    Aida, I., Daryoush, A., Ali, M., and Maryam, F., Ultrasound-assisted emulsification microextraction for separation of trace amounts of antimony prior to FAAS determination, Microchim. Acta, 2012, vol. 176, no. 1–2, pp. 185–192.Google Scholar
  25. 25.
    Ulusoy, H.İ., Akcay, M., Ulusoy, S., and Gürkan, R., Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction, Anal. Chim. Acta, 2011, vol. 703, no. 2, pp. 137–144.CrossRefGoogle Scholar
  26. 26.
    Pourreza, N. and Ghanemi, K., Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole, J. Hazard. Mater., 2009, vol. 161, nos. 2–3, pp. 982–987.Google Scholar
  27. 27.
    Matusiewicz, H. and Krawczyk, M., Determination of total mercury by vapor generation in situ trapping flame atomic absorption spectrometry, Chem. Anal., 2008, vol. 53, no. 6, pp. 905–925.Google Scholar
  28. 28.
    Oreshkin, V.N. and Tsizin, G.I., Three-chamber atomizer with two zones for the evaporation for atomic absorption analysis of natural waters and slurries, Zavod. Lab., Diagn. Mater., 2010, vol. 76, no. 10, pp. 14–18.Google Scholar
  29. 29.
    Oreshkin, V.N. and Tsizin, G.I., Graphite furnace atomic absorption determination of elements in natural waters and suspensions after concentrates separation on membrane filters, Zavod. Lab., Diagn. Mater., 2013, vol. 79, no. 3, pp. 18–20.Google Scholar
  30. 30.
    Donati, G.L., Wildman, R.B., and Jones, B.T., A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry, Anal. Chim. Acta, 2011, vol. 688, no. 1, pp. 36–42.CrossRefGoogle Scholar
  31. 31.
    Temerdashev, Z.A., Burylin, M.Yu., and Veligodskii, I.M., Graphite furnace atomic absorption determination of volatile elements using permanent modifier on a carbonized base, Zavod. Lab., Diagn. Mater., 2009, vol. 75, no. 11, pp. 18–22.Google Scholar
  32. 32.
    Safarova, V.I., Shaidulina, G.F., Mikheeva, T.N., et al., Determination of Se, As, Sb, Te, and Bi in wastewaters of mining-and-processing integrated works with the use of AAS-ETA, Inorg. Mater., 2011, vol. 47, no. 14, pp. 1500–1504.CrossRefGoogle Scholar
  33. 33.
    López-García, I., Rivas, R.E., and Hernández-Córdoba, M., Use of carbon nanotubes and graphite furnace atomic absorption spectrometry for the speciation of very low amounts of arsenic and antimony in waters, Talanta, 2011, vol. 86, pp. 52–57.Google Scholar
  34. 34.
    Baig, J.A., Kazi, T.G., Shah, A.Q., et al., Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique, Anal. Chim. Acta, 2009, vol. 651, no. 1, pp. 57–63.CrossRefGoogle Scholar
  35. 35.
    Pabieh, S., Bagheri, M., and Planer-Friedrich, B., Speciation of arsenite and arsenate by graphite furnace AAS flowing ionic liquid dispersive liquid/liquid microextraction, Microchim. Acta, 2013, vol. 180, nos. 5–6, pp. 415–421.Google Scholar
  36. 36.
    Mahnaz, G., Reza, K.-Z.M., Ali, Y.Y.E., and Najmeh, Y., Preconcentration and speciation of arsenic in water specimens by the combination of solidification of floating drop microextraction and graphite furnace atomic absorption spectrometry, Talanta, 2010, vol. 81, no. 1–2, pp. 197–201.Google Scholar
  37. 37.
    Dal’nova, O.A., Dmitrieva, A.P., Ivannikova, N.V., et al., GFAAS determination of mercury in demercuration solutions, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 6, pp. 5–8.Google Scholar
  38. 38.
    Mojtaba, Sh. and Saeed, H., A highly sensitive procedure for determination of ultra trace amounts of molybdenum by graphite furnace atomic absorption spectrometry after dispersive liquid-liquid microextraction, Microchim. Acta, 2010, vol. 171, nos. 3–4, pp. 267–273.Google Scholar
  39. 39.
    Mashkoure, N.N., Hamed, T., Reza, A., and Shahram, S., Speciation and determination of ultra trace amount of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry, Anal. Chim. Acta, 2010, vol. 670, nos. 1–2, pp. 18–23.Google Scholar
  40. 40.
    Pupyshev, A.A., The high-resolution continuum source atomic absorption spectrometers, Anal. Kontrol’, 2008, vol. 12, nos. 3–4, pp. 64–92.Google Scholar
  41. 41.
    Pesa-Vázquez, E., Barciela-Alonso, M.C., Pita-Calvo, C., et al., Use of high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) for sequential multi-element determination of metals in seawater and wastewater samples, J. App. Spectrosc., 2015, vol. 82, no. 4, pp. 681–686.Google Scholar
  42. 42.
    Zhao, L., Zhong, S., Fang, K., et al., Determination of cadmium (II), cobalt (II), nickel (II), lead (II), zinc (II), and copper (II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry, J. Hazard. Mater., 2012, vols. 239–240, pp. 206–212.Google Scholar
  43. 43.
    Kubrakova, I.V., Koshcheeva, I.Ya., Pryazhnikov, D.V., et al., Microwave synthesis, properties and analytical possibilities of magnetitebased nanoscale sorption materials, J. Anal. Chem., 2014, vol. 69, no. 4, pp. 336–346.CrossRefGoogle Scholar
  44. 44.
    Mashhadizadeh, M.H. and Karami, Z., Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES, J. Hazard. Mater., 2011, vol. 190, nos. 1–3, pp. 1023–1029.Google Scholar
  45. 45.
    Faraji, M., Yamini, Y., Saleh, A., et al., A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples, Anal. Chim. Acta, 2010, vol. 659, nos. 1–2, pp. 172–177.Google Scholar
  46. 46.
    Cheng, G., He, M., Peng, H., and Hu, B., Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES, Talanta, 2012, vol. 88, pp. 507–515.CrossRefGoogle Scholar
  47. 47.
    Knápek, J., Komárek, J., and Novotný, K., Determination of cadmium, chromium and copper in high salt samples by LA-ICP-OES after electrodeposition—preliminary study, Microchim. Acta, 2010, vol. 171, nos. 1–2, pp. 145–150.Google Scholar
  48. 48.
    Schiavo, D., Trevizan, L.C., Pereira-Filho, E.R., and Nubrega, J.A., Evaluation of the use of multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing, Spectrochim. Acta, Part B, 2009, vol. 64, no. 6, pp. 544–548.CrossRefGoogle Scholar
  49. 49.
    Toropov, L.I., Mal’tsev, A.A., and Lyskova, T.M., Study of conditions of heavy metals optical emission determination of in water bodies, Zavod. Lab., Diagn. Mater., 2014, vol. 80, no. 5, pp. 19–22.Google Scholar
  50. 50.
    Meeravali, N.N., Madhavi, K., and Kumar, S.J., A sensitive sequential non-chromatographic speciation analysis of chromium in natural/wastewaters by inductively coupled plasma optical emission spectrometry, J. Anal. At. Spectrom., 2011, vol. 26, no. 1, pp. 214–219.CrossRefGoogle Scholar
  51. 51.
    Bashilov, A.V. and Rogova, O.B., Optical emission spectrometry of microwave plasma: positioning, advantages and limitations, Zavod. Lab., Diagn. Mater., 2014, vol. 80, no. 5, pp. 23–28.Google Scholar
  52. 52.
    Karandashev, V.K., Orlova, T.A., and Lezhnev, A.E., Opredelenie elementnogo sostava prirodnykh i pit’evykh vod metodom ICP MS. Metodika kolichestvennogo khimicheskogo analiza. Instruktsiya NSAM no. 480-Kh (Determination of the Elemental Composition in Natural and Drinking Water by ICP-MS. Quantitative Chemical Analysis: Instruction NSAM No. 480-Kh), Moscow: Vseross. Nauchno-Issled. Inst. Miner. Syr’ya, 2006.Google Scholar
  53. 53.
    Karandashev, V.K., Orlova, T.A., and Lezhnev, A.E., Determination of Total Mercury in Natural and Drinking Water by ICP-MS: Instructions NSAM No. 480-Kh, Moscow: Vseross. Nauchno-Issled. Inst. Miner. Syr’ya, 2006.Google Scholar
  54. 54.
    Cui, C., Peng, H., Zhang, Y., Nan, K., et al., , 2015, vol. 30, no. 6, pp. 1386–1394.Google Scholar
  55. 55.
    Su, C., Zee, T., and Sun, Y., On-line solid phase extraction using a PVC-packed minicolumn coupled with ICP-MS for determination of trace multielements in complicated matrices, J. Anal. At. Spectrom., 2012, vol. 27, no. 9, pp. 1585–1590.CrossRefGoogle Scholar
  56. 56.
    Guo, X., He, M., Chen, B., and Hu, B., Solidified floating organic drop microextraction combined with ETV-ICP-MS for the determination of trace heavy metals in environmental water samples, Talanta, 2012, vol. 94, pp. 70–76.CrossRefGoogle Scholar
  57. 57.
    Bueno Cotta, A.J. and Enzweiler, J., Quantification of major and trace elements in water samples by ICP-MS and collision cell to attenuate Ar and Cl-based polyatomic ions, J. Anal. At. Spectrom., 2009, vol. 24, no. 10, pp. 1406–1413.CrossRefGoogle Scholar
  58. 58.
    Issa, N.B., Rajaković-Ognjanović, V.N., Marinković, A.D., and Rajaković, L.V., Separation and determination of arsenic species in water by selective exchange and hybrid resins, Anal. Chim. Acta, 2011, vol. 706, no. 1, pp. 191–198.CrossRefGoogle Scholar
  59. 59.
    Chen, Z.L., Megharaj, M., and Naidu, R., Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry, Talanta, 2007, vol. 72, no. 2, pp. 394–400.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. A. Dal’nova
    • 1
    • 2
    Email author
  • G. I. Bebeshko
    • 2
  • V. V. Es’kina
    • 1
    • 2
  • V. B. Baranovskaya
    • 3
  • Yu. A. Karpov
    • 3
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.State Research and Design Institute of Rare-Metal Industry “Giredmet”MoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations