Advertisement

Inorganic Materials

, Volume 54, Issue 14, pp 1421–1429 | Cite as

Current State and Problems of Analytical Control of Spent Automobile Catalysts (Review)

  • T. Yu. Alekseeva
  • Yu. A. KarpovEmail author
  • O. A. Dal’nova
  • V. V. Es’kina
  • V. B. Baranovskaya
  • L. D. GorbatovaEmail author
ANALYSIS OF SUBSTANCES
  • 12 Downloads

Abstract—Spent Automobile Catalysts (SACs) hold a special place among secondary raw materials containing precious metals. Accurate determination of platinum group metals in SACs plays an important role influencing the economic efficiency of the utilization process. In this work, we review the methods of analysis of SACs available in the literature, as well as methodological developments of the Giredmet Institute in collaboration with Anserteko and NUST “MISiS”. The main emphasis is placed on the use of modern tools for chemical preparation of hard-to-break objects like SACs, including autoclave and microwave opening of the samples. The advantages of the assay concentration method based on developments at the Yekaterinburg Non-Ferrous Metals Processing Plant for analysis of SACs are considered. We discuss certified spectroscopic and chemical methods which have been developed for analysis of spent automobile catalysts and outline the ways of their further improvement.

Keywords:

analytical control spent automobile catalysts platinum group metals 

Notes

ACKNOWLEDGMENTS

This work was performed with financial support of the Russian Science Foundation within the framework of agreement 15-33-70037 (the part of the work concerning studying the possibility of applying electrothermal atomic absorption spectroscopy with continuum source) and the Russian Science Foundation within the Agreement 16-13-10417 (the part of the work concerning studying the properties of sulfur-nitrogen-containing sorbents).

REFERENCES

  1. 1.
    Popova, N.M., Katalizatory ochistki vykhlopnykh gazov avtotransporta (Catalysts for Purification of Automobile Exhaust Gases), Alma-Ata: Nauka, 1987.Google Scholar
  2. 2.
    PGM Market Report 2016, Royston: Johnson Matthey’s, 2016.Google Scholar
  3. 3.
    Dyachkova, A.V., Malutina, T.M., Karpov, Yu.A., and Alekseeva, T.Yu., Chemical preparation of samples of dead automobile catalyzers for subsequent determination of platinum, palladium, and rhodium using atomic optical spectrometry with inductively coupled plasma, Inorg. Mater., 2012, vol. 48, no. 14, pp. 1272–1278.CrossRefGoogle Scholar
  4. 4.
    Brown, J.A., Kunz, F.W., and Belitz, R.K., Characterization of automotive catalysts using inductively coupled plasma mass spectrometry: sample preparation, J. Anal. At. Spectrom., 1991, vol. 6, no. 5, pp. 393–395.CrossRefGoogle Scholar
  5. 5.
    Borisov, O.V., Coleman, D.M., Oudsema, K.A., and Carter, R.O., Determination of platinum, palladium, rhodium and titanium in automotive catalytic converters using inductively coupled plasma mass spectrometry with liquid nebulization, J. Anal. At. Spectrom., 1997, vol. 12, no. 2, pp. 239–246.CrossRefGoogle Scholar
  6. 6.
    Fedyunina, N.N., Kirichenko, A.S., Seregin, A.N., et al., Some methods of determining the content of platinum group metals in spent automotive catalysts and products of their processing, Probl. Chern. Metall. Materialoved., 2014, no. 1, pp. 73–78. Google Scholar
  7. 7.
    Shen, S., Guishen, L., Pan, T., et al., Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J, J. Colloid Interface Sci., 2011, vol. 364, pp. 482–489.Google Scholar
  8. 8.
    Bencs, L., Ravindra, K., and van Grieken, R., Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters, Spectrochim. Acta, Part B, 2003, vol. 58, pp. 1723–1755.CrossRefGoogle Scholar
  9. 9.
    Rauch, S., Morrison, G.M., and Moldovan, M., Scanning laser ablation-ICP-MS tracking of platinum group elements in urban particles, Sci. Total Environ., 2002, vol. 286, pp. 243–251.CrossRefGoogle Scholar
  10. 10.
    Vanhaecke, F., Resano, M., García-Ruiz, E., et al., Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry (LA-ICP-DRC-MS) for the determination of Pt, Pd and Rh in Pb buttons obtained by fire assay of platiniferous ores, J. Anal. At. Spectrom., 2004, vol. 19, pp. 632–638.CrossRefGoogle Scholar
  11. 11.
    Resano, M., García-Ruiz, E., McIntosh, K.S., and Vanhaecke, F., Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the determination of platinum group metals and gold in NiS buttons obtained by fire assay of platiniferous ores, J. Anal. At. Spectrom., 2008, vol. 23, pp. 1599–1609.CrossRefGoogle Scholar
  12. 12.
    Vanhaecke, F., Resano, M., Koch, J., et al., Femtosecond laser ablation-ICP-mass spectrometry analysis of a heavy metallic matrix: determination of platinum group metals and gold in lead fire-assay buttons as a case study, J. Anal. At. Spectrom., 2010, vol. 25, pp. 1259–1267.CrossRefGoogle Scholar
  13. 13.
    Resano, M., McIntosh, K.S., and Vanhaecke, F., Laser ablation-inductively coupled plasma-mass spectrometry using a double-focusing sector field mass spectrometer of Mattauch–Herzog geometry and an array detector for the determination of platinum group metals and gold in NiS buttons obtained by fire assay of platiniferous ores, J. Anal. At. Spectrom., 2012, vol. 27, pp. 165–173.CrossRefGoogle Scholar
  14. 14.
    Alekseeva, T.Yu., Filichkina, V.A., and Karpov, Yu.A., Innovative research by the certification and analytical control department on the chemical analysis of metal-bearing secondary raw materials, Metallurgist, 2010, vol. 54, nos. 5–6, pp. 291–294.Google Scholar
  15. 15.
    Wayne, D.M., Direct determination of trace noble metals (palladium, platinum and rhodium) in automobile catalysts by glow discharge mass spectrometry, J. Anal. At. Spectrom., 1997, vol. 12, pp. 1195–1202.CrossRefGoogle Scholar
  16. 16.
    Resano, M., García-Ruiz, E., McIntosh, K.S., et al., Comparison of the solid sampling techniques laser ablation-ICP-MS, glow discharge-MS and spark-OES for the determination of platinum group metals in Pb buttons obtained by fire assay of platiniferous ores, J. Anal. At. Spectrom., 2006, vol. 21, pp. 899–909.CrossRefGoogle Scholar
  17. 17.
    Palesskii, S.V., Nikolaeva, I.V., Koz’menko, O.A., and Anoshin, G.N., Determination of platinum-group elements and rhenium in standard geological samples by isotope dilution with mass-spectrometric ending, J. Anal. Chem., 2009, vol. 64, no. 3, pp. 272–276.CrossRefGoogle Scholar
  18. 18.
    Asimellis, G., Michos, N., Fasaki, I., and Kompitsas, M., Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy, Spectrochim. Acta, Part B, 2008, vol. 63, pp. 1338–1343.CrossRefGoogle Scholar
  19. 19.
    Lucena, P., Vadillo, J.M., and Laserna, J.J., Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry, Anal. Chem., 1999, vol. 71, pp. 4385–4391.CrossRefGoogle Scholar
  20. 20.
    Compernolle, S., Wambeke, D., De Raedt, I., et al., Direct determination of Pd, Pt and Rh in fire assay lead buttons by laser ablation-ICP-OES: automotive exhaust catalysts as an example, J. Anal. At. Spectrom., 2011, vol. 26, pp. 1679–1684.CrossRefGoogle Scholar
  21. 21.
    Malyutina, T.M., D’yachkova, A.V., Kudryavtseva, G.S., et al., Determination of platinum and palladium in dead catalysts using inductively coupled plasma atomic optical spectrometry after sample digestion by high-temperature fusion, Inorg. Mater., 2010, vol. 46, no. 14, pp. 1479–1482.CrossRefGoogle Scholar
  22. 22.
    D’yachkova, A.V., Kirillov, A.D., Karpov, Yu.A., and Alekseeva, T.Yu., Decomposition of samples of used ceramic-based automotive catalytic converters in analytical autoclaves with resistive heating, Inorg. Mater., 2013, vol. 49, no. 14, pp. 1272–1276.CrossRefGoogle Scholar
  23. 23.
    D’yachkova, A.V., Alekseeva, T.Yu., Es’kina, V.V., and Dal’nova, O.A., Platinum, palladium and rhodium finding in metal-based dead automobile catalysts by atomic-optical spectrometry, Tsvetn. Met., 2016, no. 6, pp. 55–61.Google Scholar
  24. 24.
    Gupta, B. and Singh, I., Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their recovery from real samples, Hydrometallurgy, 2013, vol. 134–135, pp. 11–18.Google Scholar
  25. 25.
    Ramachandra Reddy, B., Raju, B., Lee, J.Y., and Park, H.K., Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336, J. Hazard. Mater., 2010, vol. 180, pp. 253–258.CrossRefGoogle Scholar
  26. 26.
    Sun, P.P. and Lee, M.S., Separation of Pt from hydrochloric acid leaching solution of spent catalysts by solvent extraction and ion exchange, Hydrometallurgy, 2011, vol. 110, pp. 91–98.CrossRefGoogle Scholar
  27. 27.
    Singh, K.K., Ruhela, R., Das, A., et al., Separation and recovery of palladium from spent automobile catalyst dissolver solution using dithiodiglycolamide encapsulated polymeric beads, J. Environ. Chem. Eng., 2015, vol. 3, pp. 95–103.CrossRefGoogle Scholar
  28. 28.
    Revathi Reddy, T., Meeravali, N.N., and Reddy, A.V.R., Phase transfer catalyst assisted directly suspended droplet microextraction of platinum from geological and spent automobile converter samples prior to HRCS AAS determination, Anal. Methods, 2013, vol. 5, no. 9, pp. 2343–2351.CrossRefGoogle Scholar
  29. 29.
    Resano, M., del Rosario Flórez, M., Queralt, I.T., and Marguíc, E., Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis, Spectrochim. Acta, Part B, 2015, vol. 105, pp. 38–46.CrossRefGoogle Scholar
  30. 30.
    Potter, N.M., Determination of rhodium in platinum-rhodium loaded automotive catalyst material by graphite furnace atomic absorption spectrometry, Anal. Chem. 1978, vol. 50, no. 7, pp. 769–772.CrossRefGoogle Scholar
  31. 31.
    Dal’nova, O.A., Shiryaeva, O.A., Karpov, Yu.A., et al., Direct atomic absorption determination of platinum, palladium, rhodium in dead ceramic-based autocatalysts, Inorg. Mater., 2010, vol. 46, no. 15, pp. 1499–1502.CrossRefGoogle Scholar
  32. 32.
    Puig, A.I. and Alvarado, J.I., Evaluation of four sample treatments for determination of platinum in automotive catalytic converters by graphite furnace atomic absorption spectrometry, Spectrochim. Acta, Part B, 2006, vol. 61, no. 9, pp. 1050–1053.CrossRefGoogle Scholar
  33. 33.
    Dal’nova, O.A., Shiryaeva, O.A., Karpov, Yu.A., et al., Sorption-atomic absorption determination of palladium and rhodium in used autocatalysts, Zavod. Lab., Diagn. Mater., 2009, vol. 75, no. 8, pp. 18–22.Google Scholar
  34. 34.
    Eskina, V.V., Dalnova, O.A., Filatova, D.G., et al., Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry, Talanta, 2016, vol. 159, pp. 103–110.CrossRefGoogle Scholar
  35. 35.
    van Meel, K., Smekens, A., Behets, M., et al., Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target x-ray fluorescence spectrometry, Anal. Chem., 2007, vol. 79, pp. 6383–6389.CrossRefGoogle Scholar
  36. 36.
    Kuzin, A.Yu., Zablotskii, A.V., Lyamina, O.I., et al., An x-ray fluorescence determination of platinum and rhodium in autocatalysts on a ceramic base, Meas. Tech., 2013, vol. 56, no. 9, pp. 1088–1091.CrossRefGoogle Scholar
  37. 37.
    Antonova, Yu.V., Bukhryakov, V.A., Karpov, Yu.A., et al., Direct x-ray fluorescence determination of platinum and rhodium in used ceramic-based autocatalysts, Inorg. Mater., 2014, vol. 50, no. 14, pp. 1431–1434.CrossRefGoogle Scholar
  38. 38.
    Chen, X., Wang, Y., Zhao, Y., et al. Comparison and research of acid digestion technique for Pt, Pd and Rh in catalysts, Rare Met. Mater. Eng., 2011, vol. 40, no. 10, pp. 1867–1870.CrossRefGoogle Scholar
  39. 39.
    Chen, A., Wang, S., Zhang, L., and Peng, J., Optimization of the microwave roasting extraction of palladium and rhodium from spent automobile catalysts using response surface analysis, Int. J. Miner. Process., 2015, vol. 143, pp. 18–24.CrossRefGoogle Scholar
  40. 40.
    Welz, B., Morés, S., Carasek, E., et al., High-resolution continuum source atomic and molecular absorption spectrometry—a review, Appl. Spectrosc. Rev., 2010, vol. 45, pp. 327–354.CrossRefGoogle Scholar
  41. 41.
    Resano, M. and García-Ruiz, E., High-resolution continuum source graphite furnace atomic absorption spectrometry: is it as good as it sounds? A critical review, Anal. Bioanal. Chem., 2011, vol. 399, pp. 323–330.CrossRefGoogle Scholar
  42. 42.
    Resano, M., Flórez, M.R., and García-Ruiz, E., High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. Acritical review of current possibilities, Spectrochim. Acta, Part B, 2013, vol. 88, pp. 85–97.CrossRefGoogle Scholar
  43. 43.
    Resano, M., Flórez, M.R., and García-Ruiz, E., Progress in the determination of metalloids and non-metals by means of high-resolution continuum source atomic or molecular absorption spectrometry: a critical review, Anal. Bioanal. Chem., 2014, vol. 406, pp. 2239–2259.CrossRefGoogle Scholar
  44. 44.
    Welz, B., Vale, M.G.R., Pereira, É.R., et al., Continuum source atomic absorption spectrometry: past, present and future aspects—a critical review, J. Braz. Chem. Soc., 2014, vol. 25, pp. 799–821.Google Scholar
  45. 45.
    Resano, M., Aramendía, M., and Belarra, M.A., High-resolution continuum source graphite furnace atomic absorption spectrometry for direct analysis of solid samples and complex materials: a tutorial review, J. Anal. At. Spectrom., 2014, vol. 29, pp. 2229–2250.CrossRefGoogle Scholar
  46. 46.
    Ginzburg, S.I., Ezerskaya, N.A., Prokof’eva, I.V., and Fedorenko, N.V., Analiticheskaya khimiya platinovykh metallov (Analytical Chemistry of Platinum Metals), Moscow: Nauka, 1972.Google Scholar
  47. 47.
    Simpson, L.A., Hearn, R., and Catterick, T., The development of a high accuracy method for the analysis of Pd, Pt and Rh in auto catalysts using a multi-collector ICP-MS, J. Anal. At. Spectrom., 2004, vol. 19, pp. 1244–1251.CrossRefGoogle Scholar
  48. 48.
    Palacios, M.A., Gomez, M.M., Moldovan, M., and Morrison, G., Platinum-group elements quantification in collected exhaust fumes and studies of catalyst surfaces, Sci. Total Environ., 2000, vol. 257, pp. 1–15.CrossRefGoogle Scholar
  49. 49.
    Rao, C.R.M. and Reddi, G.S., Platinum group metals (PGM); occurrence, use and recent trends in their determination, TrAC, Trends Anal. Chem., 2000, vol. 19, no. 9, pp. 565–586.CrossRefGoogle Scholar
  50. 50.
    Kylander, M.E., Rauch, S., Morrison, G.M., and Andam, K., Impact of automobile emissions on the levels of platinum and lead in Accra, Ghana, J. Environ. Monit., 2003, no. 5, pp. 91–95.Google Scholar
  51. 51.
    Dubakin, V.A., Zotov, V.S., and Kuznetsov, S.D., Neitralizatsiya otrabotavshikh gazov avtomobil’nykh dvigatelei (Neutralization of Exhaust Gases of Automobile Engines), Moscow: Ekomash-KN, 2008.Google Scholar
  52. 52.
    Kuz’min, N.M. and Zolotov, Yu.A., Kontsentrirovanie sledov elementov (Concentration of Traces of Elements), Moscow: Nauka, 1988.Google Scholar
  53. 53.
    Marhol, M., Ion Exchangers in Analytical Chemistry: Their Properties and Use in Inorganic Chemistry, Amsterdam: Elsevier, 1982, part 2.Google Scholar
  54. 54.
    Simanova, S.A. and Kukushkin, Yu.N., Concentration and determination of platinum metals using TSPA fiber, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1985, vol. 28, no. 8, pp. 3–15.Google Scholar
  55. 55.
    Pechenyuk, S.I., Sorbtsionno-gidroliticheskoe osazhdenie platinovykh metallov na poverkhnosti neorganicheskikh sorbentov (Sorption-Hydrolytic Deposition of Platinum Metals on the Surface of Inorganic Sorbents), Leningrad: Nauka, 1991.Google Scholar
  56. 56.
    Analiticheskaya khimiya metallov platinovoi gruppy (Analytical Chemistry of Platinum Group Metals), Zolotov, Yu.A., Varshal, G.M., and Ivanov, V.M., Eds., Moscow: URSS Editorial, 2003.Google Scholar
  57. 57.
    Ginzburg, S.I., Gladyshevskaya, K.A., Ezerskaya, N.A., et al., Rukovodstvo po khimicheskomu analizu platinovykh metallov i zolota (Handbook of Chemical Analysis of Platinum Metals and Gold), Moscow: Nauka, 1965.Google Scholar
  58. 58.
    Fraser, J., Beamish, F.E., and McBryde, W., Separation of palladium from lead and the colorimetric determination of palladium with potassium iodide, Anal. Chem., 1954, vol. 26, pp. 495–498.CrossRefGoogle Scholar
  59. 59.
    Akimov, V.K., The choice of solvents for the extraction of precious metals, Trudy VI Soveshchaniya po analizu blagorodnykh metallov, Tezisy dokladov (Proc. VI Conf. on the Analysis of Precious Metals, Abstracts of Papers), Moscow: Akad. Nauk SSSR, 1963, p. 6.Google Scholar
  60. 60.
    Kasikov, A.G. and Petrova, A.M., Processing of deactivated platinum-rhenium catalysts, Khim. Tekhnol., 2008, vol. 9, no. 8, pp. 376–385.Google Scholar
  61. 61.
    Smirnov, I.V., Karavan, M.D., Efremova, T.I., Babain, V.A., Miroshnichenko, S.I., Cherenok, S.A., and Kal’chenko, V.I., Extraction of Am, Eu, Tc, and Pd from nitric acid solutions with phosphorylated calixarenes, Radiochemistry, 2007, vol. 49, no. 5, pp. 482–492.CrossRefGoogle Scholar
  62. 62.
    Kalimgulova, A.N., Parfenova, M.A., Ulendeeva, A.D., Lyapina, N.K., Khisamutdinov, R.A., and Murinov, Yu.I., Keto sulfides derived from tert-dodecyl mercaptan and their extractive power with respect to palladium(II) and gold(III), Russ. J. Appl. Chem., 2006, vol. 79, no. 11, pp. 1798–1801.CrossRefGoogle Scholar
  63. 63.
    Uspekhi analiticheskoi khimii: k 75-letiyu akademika Zolotova Yu.A. (Advances in Analytical Chemistry: To the 75th Anniversary of Academician Yu.A. Zolotov), Moscow: Nauka, 2007.Google Scholar
  64. 64.
    Dal’nova, Yu.S., Kovtunenko, S.V., Ivashchenko, A.A., Alekseev, S.V., and Zhirnov, B.S., RF Patent 2205237, 2003.Google Scholar
  65. 65.
    Baranovskaya, V.B., Alekseeva, T.Yu., Mar’ina, G.E., et al., Analytical control of waste automotive neutralizers containing precious metals, Materialy III mezhdunarodnoi nauchno-prakticheskoi konferentsii “Materialy v avtomobilestroenii,” 19–20 iyunya 2008 g. (Proc. III Int. Sci.-Pract. Conf. “Materials in the Automotive Industry,” June 19–20, 2008), Tolyatti, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. Yu. Alekseeva
    • 1
    • 2
  • Yu. A. Karpov
    • 2
    • 3
    • 4
    Email author
  • O. A. Dal’nova
    • 2
    • 3
  • V. V. Es’kina
    • 2
    • 3
  • V. B. Baranovskaya
    • 2
    • 3
    • 4
  • L. D. Gorbatova
    • 5
    Email author
  1. 1.OOO Anserteko Analytical, Ecological, and Certification CenterMoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia
  3. 3.State Research and Design Institute of the Rare Metals Industry “Giredmet”MoscowRussia
  4. 4.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  5. 5.AO Yekaterinburg Non-Ferrous Metals Processing PlantVerkhnyaya PyshmaRussia

Personalised recommendations