Advertisement

Inorganic Materials

, Volume 54, Issue 13, pp 1330–1362 | Cite as

Development of Modern Fundamental Materials Science at the Faculty of Materials Science of the Moscow State University

  • E. A. GudilinEmail author
  • A. A. Semenova
  • A. A. Petrov
  • A. B. Tarasov
  • A. V. Lukashin
  • K. A. Solntsev
Article
  • 54 Downloads

Abstract

The key families of modern materials and the evolution of promising materials research trends, which has entered an active phase in the 1990s, are reviewed. It is noted that the classical approaches to materials engineering centered on revealing and utilizing correlations between the composition, the structure, and the properties should be complemented by a thorough analysis of the actual structure and the structure-sensitive characteristics of materials; careful consideration of the synergy of external effects in material synthesis and the possibilities provided by template synthesis, self-assembly, and self-organization in nanomaterials engineering; and the examination of response of living systems to biomaterials. Being highly interdisciplinary, fundamental materials science borrows heavily from modern inorganic chemistry, physical chemistry, and solid-state chemistry, which invariably guide the development trends in materials science.

Keywords:

inorganic materials scientific fields perovskites self-organization nanomaterials biomaterials 

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation (grant no. 14-13-00871).

We wish to thank V.M. Ievlev, P.E. Kazin, O.A. Shlyakhtin, and D.M. Itkis for providing the needed data.

REFERENCES

  1. 1.
    Tretyakov, Yu.D. and Goodilin, E.A., Key trends in basic and application-oriented research on nanomaterials, Russ. Chem. Rev., 2009, vol. 78, pp. 801–820. doi 10.1070/RC2009v078n09ABEH004029CrossRefGoogle Scholar
  2. 2.
    Tret’yakov, Yu.D. and Gudilin, E.A., Lessons from the foreign nanohype, Herald Russ. Acad. Sci., 2009, vol. 79, pp. 1–6. doi 10.1134/S1019331609010018CrossRefGoogle Scholar
  3. 3.
    Tretyakov, Y.D., Oleinikov, N.N., Gudilin, E.A., Vertegel, A.A., and Baranov, A.N., Self-organization in physicochemical systems – on the path to creating novel materials, Inorg. Mater., 1994, vol. 30, pp. 277–290.Google Scholar
  4. 4.
    Tarasov, A.B., Goertz, V., Goodilin, E.A., and Nirschl, H., Hydrolytic stages of titania nanoparticles formation jointly studied by SAXS, DLS, and TEM, J. Phys. Chem. C, 2013, vol. 117, pp. 12800–12805. doi 10.1021/jp312443uCrossRefGoogle Scholar
  5. 5.
    Kazin, P.E., Zykin, M.A., Schnelle, W., Felser, C., and Jansen, M., Rich diversity of single-ion magnet features in the linear OCuIIIO ion confined in the hexagonal channels of alkaline-earth phosphate apatites, Chem. Commun., 2014, vol. 50, pp. 9325–9328. doi 10.1039/C4CC03966ACrossRefGoogle Scholar
  6. 6.
    Kazin, P.E., Zykin, M.A., Utochnikova, V.V., Magdysyuk, O.V., Vasiliev, A.V., Zubavichus Y.V., Schnelle, W., Felser, C., and Jansen, M., “Isolated” DyO+ embedded in a ceramic apatite matrix featuring single-molecule magnet behavior with a high energy barrier for magnetization relaxation, Angew. Chem., Int. Ed., 2017, vol. 56, pp. 13416–13420. doi 10.1002/anie.201706391CrossRefGoogle Scholar
  7. 7.
    Brzhezinskaya, M., Generalov, A., Vinogradov, A., and Eliseev, A., Characterization of CuHal-intercalated carbon nanotubes with X-ray absorption spectroscopy combined with X-ray photoelectron and resonant photoemission spectroscopies, J. Phys.: Conf. Ser., 2013, vol. 430, p. 012133.Google Scholar
  8. 8.
    Chumakov, A.P., Grigoriev, S.V., Grigoryeva, N.A., Napolskii, K.S., Eliseev, A.A., Roslyakov, I.V., Okorokov, A.I., and Eckerlebe, H., Magnetic properties of cobalt nanowires: Study by polarized SANS, Phys. B, 2011, vol. 406, pp. 2405–2408. doi 10.1016/j.physb.2010.10.081CrossRefGoogle Scholar
  9. 9.
    Chumakova, A.V., Mistonov, A.A., Vorobiev, A.A., Chumakov, A.P., Grigoryeva, N.A., Sapoletova, N.A., Napolskii, K.S., Eliseev, A.A., and Grigoriev, S.V., Formation of artificial opals viewed in situ by X-ray grazing incidence diffraction, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2013, vol. 7, pp. 1234–1239. doi 10.1134/S1027451013130041CrossRefGoogle Scholar
  10. 10.
    Dhara, S., Liu, C.P., Chen, S.F., Eliseev, A.A., and Petukhov, D.I., Resonance Raman spectroscopic study of shape-induced phase transition in CdSe nanoclusters, J. Raman Spectrosc., 2015, vol. 46, pp. 1–3. doi 10.1002/jrs.4586CrossRefGoogle Scholar
  11. 11.
    Eliseev, A.A., Sapoletova, N.A., Snigireva, I., Snigirev, A., and Napolskii, K.S., Electrochemical X-ray photolithography, Angew. Chem., Int. Ed., 2012, vol. 51, pp. 11602–11605.CrossRefGoogle Scholar
  12. 12.
    Generalov, A.V., Brzhezinskaya, M.M., Puettner, R., Vinogradov, A.S., Chernysheva, M.V., Eliseev, A.A., Kiselev, N.A., Lukashin, A.V., and Tretyakov, Yu.D., Electronic structure of CuI@SWCNT nanocomposite studied by X-ray absorption spectroscopy, Fullerenes, Nanotubes, Carbon Nanostruct., 2010, vol. 18, pp. 574–578. doi 10.1080/1536383X.2010.488086CrossRefGoogle Scholar
  13. 13.
    Grigor’ev, S.V., Grigor’eva, N.A., Syromyatnikov, A.V., Napol’skii, K.S., Eliseev, A.A., Lukashin, A.V., Tret’yakov, Yu.D., and Eckerlebe, H., Spatially ordered arrays of magnetic nanowires: Polarized-neutron scattering investigation, JETP Lett., 2007, vol. 85, pp. 605–610. doi 10.1134/S0021364007120041CrossRefGoogle Scholar
  14. 14.
    Grigor’ev, S.V., Grigor’eva, N.A., Syromyatnikov, A.V., Napol’skii, K.S., Eliseev, A.A., Lukashin, A.V., Tret’yakov, Yu.D., and Eckerlebe, H., Two-dimensional spatially ordered Al2O3 systems: Small-angle neutron scattering investigation, JETP Lett., 2007, vol. 85, pp. 449–453. doi 10.1134/S0021364007090081CrossRefGoogle Scholar
  15. 15.
    Grigor’ev, S.V., Napol’skii, K.S., Grigor’eva, N.A., Eliseev, A.A., Lukashin, A.V., Tret’yakov, Yu.D., and Eckerlebe, H., Magnetic inverted photonic crystals: A polarized neutron scattering study, JETP Lett., 2008, vol. 87, pp. 12–17. doi 10.1134/S0021364008010049CrossRefGoogle Scholar
  16. 16.
    Grigoriev, S.V., Syromyatnikov, A.V., Chumakov, A.P., Grigoryeva, N.A., Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Petukhov, A.V., and Eckerlebe, H., Nanostructures: Scattering beyond the Born approximation, Phys. Rev. B, 2010, vol. 81, p. 125405. doi 10.1103/PhysRevB.81.125405CrossRefGoogle Scholar
  17. 17.
    Grigorieva, N.A., Grigoriev, S.V., Eckerlebe, H., Eliseev, A.A., Napolskii, K.S., Lukashin, A.V., and Tretyakov, Yu.D., Magnetic properties of iron nanoparticles in mesoporous silica matrix, J. Magn. Magn. Mater., 2006, vol. 300, pp. E342–E345. doi 10.1016/j.jmmm.2005.10.116CrossRefGoogle Scholar
  18. 18.
    Grunin, A.A., Sapoletova, N.A., Napolskii, K.S., Eliseev, A.A., and Fedyanin, A.A., Magnetoplasmonic nanostructures based on nickel inverse opal slabs, J. Appl. Phys., 2012, vol. 111, p. 07A948. doi 10.1063/1.3680175Google Scholar
  19. 19.
    Verbitskiy, N., Fedorov, A., Tresca, C., Profeta, G., Petaccia, L., Senkovskiy, B., Usachov, D., Vyalikh, D., Yashina, L., Eliseev, A., Pichler, T., and Grueneis, A., Environmental control of electron–phonon coupling in barium doped graphene, 2D Mater., 2016, vol. 3, p. 045003. doi 10.1088/2053-1583/3/4/045003Google Scholar
  20. 20.
    Verbitskiy, N.I., Fedorov, A.V., Profeta, G., Stroppa, A., Petaccia, L., Senkovskiy, B., Nefedov, A., Wöll, C., Usachov, D.Yu., Vyalikh, D.V., Yashina, L.V., Eliseev, A.A., Pichler, T., and Grüneis, A. Atomically precise semiconductor–graphene and hBN interfaces by Ge intercalation, Sci. Rep., 2015, vol. 5, p. 17700. doi 10.1038/srep17700CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Voropaev, S.A., Sevast’yanov, V.S., Eliseev, A.A., and Petukhov, D.I., Raman identification of calcite grains in the Chelyabinsk meteorite, Geochem. Int., 2013, vol. 51, pp. 593–598. doi 10.1134/S001670291307015XCrossRefGoogle Scholar
  22. 22.
    Tarasov, A., Trusov, G., Minnekhanov, A., Gil, D., Konstantinova, E., Goodilin, E.A., and Dobrovolsky, Yu., Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of thermally assisted reactions in aqueous sprays, J. Mater. Chem. A, 2014, vol. 2, pp. 3102–3109. doi 10.1039/C3TA14298ACrossRefGoogle Scholar
  23. 23.
    Shlyakhtin, O.A., Inorganic cryogels, Adv. Polym. Sci., 2014, vol. 263, pp. 223–244.CrossRefGoogle Scholar
  24. 24.
    Li, S.R., Oleinikov, N.N., and Gudilin, E.A., Problems and perspectives of development of preparation techniques of HTSC materials from melts, Inorg. Mater., 1993, vol. 29, pp. 1–17.Google Scholar
  25. 25.
    Tretyakov, Yu.D. and Goodilin, E.A., Chemical principles of preparation of metal-oxide superconductors, Russ. Chem. Rev., 2000, vol. 69, p. 1.CrossRefGoogle Scholar
  26. 26.
    Tretyakov, Yu.D., Goodilin, E.A., Peryshkov, D.V., and Itkis, D.M., Structural and microstructural features of functional materials based on cuprates and manganites, Russ. Chem. Rev., 2004, vol. 73, p. 881.CrossRefGoogle Scholar
  27. 27.
    Tret’yakov, Yu.D., Gudilin, E.A., Reddy, E.S., and Schmitz, G.J., Modern preparation methods of oriented thick films of superconducting cuprates, Crystallogr. Rep., 2004, vol. 49, pp. 233–239. doi 10.1134/1.1690423CrossRefGoogle Scholar
  28. 28.
    Goodilin, E., Kambara, M., Umeda, T., and Shiohara, Y., Construction of a quasi-ternary phase diagram in the NdO1.5–BaO–CuO system in the air atmosphere Part II. Phase equilibria of the neodymium-rich Nd1 + xBa2 − xCu3Oz solid solution, Phys. C, 1997, vol. 289, pp. 251–264. doi 10.1016/S0921-4534-(97)01469-XCrossRefGoogle Scholar
  29. 29.
    Goodilin, E., Kambara, M., Umeda, T., and Shiohara, Y., Solubility of neodymium in copper-rich oxide melts in air and growth of Nd1 + xBa2 − xCu3Oz solid solution single crystals, Phys. C, 1997, vol. 289, pp. 37–50. doi 10.1016/S0921-4534(97)01596-7CrossRefGoogle Scholar
  30. 30.
    Goodilin, E., Limonov, M., Panfilov, A., Khasanova, N., Oka, A., Tajima, S., and Shiobara, Y., Oxygen nonstoichiometry and phase transitions of the neodymium-rich Nd1 + xBa2 − xCu3Oz solid solution, Phys. C, 1998, vol. 300, pp. 250–269. doi 10.1016/S0921-4534(98)00114-2CrossRefGoogle Scholar
  31. 31.
    Goodilin, E., Oka, A., Wen, J.G., Shiohara, Y., Kambara, M., and Umeda, T., Twins and related morphology of as-grown neodymium-rich Nd1 + xBa2 − xCu3Oz crystals, Phys. C, 1998, vol. 299, pp. 279–300. doi 10.1016/S0921-4534(97)01808-XCrossRefGoogle Scholar
  32. 32.
    Goodilin, E.A., Oleynikov, N.N., Antipov, E.V., Shpanchenko, R.V., Popov, G.Y., Balakirev, V.G., and Tretyakov, Y.D., On the stability region and structure of the Nd1 + xBa2 − xCu3Oy solid solution, Phys. C, 1996, vol. 272, pp. 65–78. doi 10.1016/S0921-4534(96)00556-4CrossRefGoogle Scholar
  33. 33.
    Goodilin, E.A., Reddy, E.S., Noudem, J.G., Tarka, M., and Schmitz, G.J., Effects of surface relief on the texture formation of melt-solidified YBa2Cu3Oz thick films on metal substrates, Phys. C, 2002, vol. 372, pp. 842–845. doi 10.1016/S0921-4534(02)00918-8CrossRefGoogle Scholar
  34. 34.
    Goodilin, E.A., Reddy, E.S., Noudem, J.G., Tarka, M., and Schmitz, G.J., Texture formation in melt-solidified YBa2Cu3Oz thick films by artificial surface reliefs, J. Cryst. Growth, 2002, vol. 241, pp. 512–534. doi 10.1016/S0022-0248(02)01320-9CrossRefGoogle Scholar
  35. 35.
    Gudilin, E.A., Oleinikov, N.N., and Tretyakov, Y.D., Solidification of superconducting yttrium barium cuprates from the peritectic melt, Zh. Neorg. Khim., 1996, vol. 41, pp. 887–898.Google Scholar
  36. 36.
    Noudem, J.G., Reddy, E.S., Goodilin, E.A., Tarka, M., Noe, M., and Schmitz, G.J., Transport properties of thick film YBa2Cu3Oy fabrics, Phys. C, 2002, vol. 372, pp. 1631–1634. doi 10.1016/S0921-4534(02)01093-6CrossRefGoogle Scholar
  37. 37.
    Petrykin, V.V., Goodilin, E.A., Hester, J., Trofimenko, E.A., Kakihana, M., Oleynikov, N.N., and Tretyakov, Y.D., Structural disorder and superconductivity suppression in NdBa2Cu3Oz (z ~ 7), Phys. C, 2000, vol. 340, pp. 16–32. doi 10.1016/S0921-4534(00)00368-3CrossRefGoogle Scholar
  38. 38.
    Reddy, E.S., Tarka, M., Noudem, J.G., Goodilin, E.A., and Schmitz, G.J., A novel process for textured thick film YBa2Cu3Oy coated conductors based on a constitutional gradients principle, Supercond. Sci. Technol., 2005, vol. 18, pp. 869–873. doi 10.1088/0953-2048/18/6/013CrossRefGoogle Scholar
  39. 39.
    Zhang, W., Goodilin, E.A., and Hellstrom, E.E., Composition studies for Ag-sheathed Bi2Sr2CaCu2O8 conductors processed in 100% O2, Supercond. Sci. Technol., 1996, vol. 9, pp. 211–217. doi 10.1088/0953-2048/9/3/014CrossRefGoogle Scholar
  40. 40.
    Kazin, P.E. and Tretyakov, Y.D., Microcomposites based on superconducting cuprates, Russ. Chem. Rev., 2003, vol. 72, p. 849.CrossRefGoogle Scholar
  41. 41.
    Chepikov, V., Mineev, N., Degtyarenko, P., Lee, S., Petrykin, V., Ovcharov, A., Vasiliev, A., Kaul, A., Amelichev, V., Kamenev, A., Molodyk, A., and Samoilenkov, S., Introduction of BaSnO3 and BaZrO3 artificial pinning centres into 2G HTS wires based on PLD-GdBCO films. Phase I of the industrial R&D programme at SuperOx, Supercond. Sci. Technol., 2017, vol. 30, p. 124001.CrossRefGoogle Scholar
  42. 42.
    Menushenkov, A.P., Ivanov, V.G., Chepikov, V.N., Nygaard, R.R., Soldatenko, A.V., Rudnev, I.A., Osipov, M.A., Mineev, N.A., Kaul, A.R., Mathon, O., and Monteseguro, V., Correlation of local structure peculiarities and critical current density of 2G MOCVD YBCO tapes with BaZrO3 nanoinclusions, Supercond. Sci. Technol., 2017, vol. 30, p. 045003. doi 10.1088/1361-6668/aa599cCrossRefGoogle Scholar
  43. 43.
    Chepikov, V., Mineev, N., Abin, D., Petrykin, V., Pokrovskii, S., Amelichev, V., Molodyk, A., Lee, S., Samoilenkov, S., Rudnev, I., and Kaul, A., Pinning properties of PLD-obtained GdBa2Cu3O7 – x coated conductors doped with BaSnO3, IEEE Trans. Appl. Supercond., 2017, vol. 27, p. 8000905. doi 10.1109/TASC.2017.2652323CrossRefGoogle Scholar
  44. 44.
    Goodilin, E.A., Pomerantseva, E.A., Krivetsky, V.V., Itkis, D.M., Hester, J., and Tretyakov, Y.D., A simple method of growth and lithiation of Ba6Mn24O48 whiskers, J. Mater. Chem., 2005, vol. 15, pp. 1614–1620. doi 10.1039/B416512HCrossRefGoogle Scholar
  45. 45.
    Itkis, D.M., Goodilin, E.A., Balagurov, A.M., Bobrikov, I.A., Sinitskii, A.S., and Tretyakov, Y.D., Preparation-dependent properties of Ca(Cu,Mn)7O12 CMR materials, Solid State Commun., 2006, vol. 139, pp. 380–385. doi 10.1016/j.ssc.2006.06.021CrossRefGoogle Scholar
  46. 46.
    Pomerantseva, E.A., Itkis, D.M., Goodilin, E.A., Noudem, J.G., Lobanov, M.V., Greenblatt, M., and Tretyakov, Y.D., Homogeneity field and magnetoresistance of the Ca(Cu,Mn)7O12 solid solution prepared in oxygen, J. Mater. Chem., 2004, vol. 14, pp. 1150–1156. doi 10.1039/B313570ECrossRefGoogle Scholar
  47. 47.
    Pomerantseva, E.A., Goodilin, E.A., and Tretyakov, Yu.D., Unconventional vapor–liquid–solid mechanism of ultra-long Ba6Mn24O48 whiskers growth from chloride fluxes, CrystEngComm, 2012, vol. 14, pp. 3778–3786. doi 10.1039/C2CE00028HCrossRefGoogle Scholar
  48. 48.
    Ulyanov, A.N., Savilov, S.V., Sidorov, A.V., Vasiliev, A.V., Pismenova, N.E., and Goodilin, E.A., Electron structure, Raman “vacancy” modes and Griffiths-like phase of self-doped Pr1 – xMnO3 + δ manganites, J. Alloys Compd., 2017, vol. 722, pp. 77–82. doi 10.1016/j.jallcom.2017.06.045CrossRefGoogle Scholar
  49. 49.
    Volkova, O.S., Goodilin, E.A., Chekanova, A.E., Veresov, A.G., Knotko, A.V., Vasiliev, A.N., and Tretyakov, Y.D., Magnetoresistive ‘necked-grain’ CaCuMn6O12 ceramics prepared by ultrasonic aerosol spray pyrolysis, Mendeleev Commun., 2005, vol. 15, pp. 131–133. doi 10.1070/MC2005v015n04ABEH002154CrossRefGoogle Scholar
  50. 50.
    Babushkina, N.A., Belova, L.M., Gorbenko, O.Yu., Kaul, A.R., Bosak, A.A., Kugel, K.I., and Ozhogin, V.L., Metal-insulator transition induced by oxygen isotop exchange in the magnetoresistive perovskite manganites, Nature, 1998, vol. 391, pp. 159–161.CrossRefGoogle Scholar
  51. 51.
    Makarevich, A.M., Sadykov, I.I., Sharovarov, D.I., Amelichev, V.A., Adamenkov, A.A., Tsymbarenko, D.M., Plokhih, A.V., Esaulkov, M.N., Solyankin, P.M., and Kaul, A.R., Chemical synthesis of high quality epitaxial vanadium dioxide films with sharp electrical and optical switch properties, J. Mater. Chem. C, 2015, vol. 3, pp. 9197–9205. doi 10.1039/C5TC01811KCrossRefGoogle Scholar
  52. 52.
    Eliseev, A.A., Gorozhankin, D.F., Napolskii, K.S., Petukhov, A.V., Sapoletova, N.A., Vasilieva, A.V., Grigoryeva, N.A., Mistonov, A.A., Byelov, D.V., Bouwman, W.G., Kvashnina, K.O., Chernyshov, D.Yu., Bosak, A.A., and Grigoriev, S.V., Determination of the real structure of artificial and natural opals on the basis of three-dimensional reconstructions of reciprocal space, JETP Lett., 2009, vol. 90, pp. 272–277. doi 10.1134/S0021364009160103CrossRefGoogle Scholar
  53. 53.
    Klimonsky, S., Knotko, A., Borodinov, N., and Eliseev, A., Control over the distribution of luminescent impurities inside opal photonic crystals, Superlattices Microstruct., 2015, vol. 85, pp. 615–619. doi 10.1016/j.spmi.2015.06.018CrossRefGoogle Scholar
  54. 54.
    Napolskii, K., Sapoletova, N., Eliseev, A., Tsirlina, G., Rubacheva, A., Gan’shina, E., Kuznetsov, M., Ivanov, M., Valdner, V., Mishina, E., van Etteger, A., and Rasing, Th., Magnetophotonic properties of inverse magnetic metal opals, J. Magn. Magn. Mater., 2009, vol. 321, pp. 833–835. doi 10.1016/j.jmmm.2008.11.067CrossRefGoogle Scholar
  55. 55.
    Napolskii, K.S., Sapoletova, N.A., Gorozhankin, D.F., Eliseev, A.A., Chernyshov, D.Yu., Byelov, D.V., Grigoryeva, N.A., Mistonov, A.A., Bouwman, W.G., Kvashnina, K.O., Lukashin, A.V., Snigirev, A.A., Vassilieva, A.V., Grigoriev, S.V., and Petukhov, A.V., Fabrication of artificial opals by electric-field-assisted vertical deposition, Langmuir, 2010, vol. 26, pp. 2346–2351. doi 10.1021/la902793bCrossRefPubMedGoogle Scholar
  56. 56.
    Napolskii, K.S., Sinitskii, A., Grigoriev, S.V., Grigorieva, N.A., Eckerlebe, H., Eliseev, A.A., Lukashin, A.V., and Tretyakov, Yu.D., Topology constrained magnetic structure of Ni photonic crystals, Phys. B, 2007, vol. 397, pp. 23–26. doi 10.1016/j.physb.2007.02.072CrossRefGoogle Scholar
  57. 57.
    Sapoletova, N., Makarevich, T., Napolskii, K., Mishina, E., Eliseev, A., van Etteger, A., Rasing, Th., and Tsirlina, G., Controlled growth of metallic inverse opals by electrodeposition, Phys. Chem. Chem. Phys., 2010, vol. 12, pp. 15414–15422. doi 10.1039/C0CP00812ECrossRefPubMedGoogle Scholar
  58. 58.
    Kocherginskaya, P.B., Romanova, A.V., Prokhorenko, I.A., Itkis, D.M., Korshun, V.A., Goodilin, E.A., and Tretyakov, Yu.D., Modification of quantum dots with nucleic acids, Russ. Chem. Rev., 2011, vol. 80, pp. 1209–1221. doi 10.1070/RC2011v080n12ABEH004238CrossRefGoogle Scholar
  59. 59.
    Vasiliev, R.B., Dirin, D.N., and Gaskov, A.M., Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties, Russ. Chem. Rev., 2011, vol. 80, pp. 1139–1158. doi 10.1070/RC2011v080n12ABEH004240CrossRefGoogle Scholar
  60. 60.
    Vasiliev, R.B., Ryabova, L.I., Rumyantseva, M.N., and Gaskov, A.M., Inorganic structures as materials for gas sensors, Russ. Chem. Rev., 2004, vol. 73, p. 939. doi 10.1070/RC2004v073n10ABEH000921CrossRefGoogle Scholar
  61. 61.
    Tarasov, A., Hu, Z.-Y., Meledina, M., Trusov, G., Goodilin, E., Van Tendeloo, G., and Dobrovolsky, Yu., One-step microheterogeneous formation of rutile@anatase core–shell nanostructured microspheres discovered by precise phase mapping, J. Phys. Chem. C, 2017, vol. 121, pp. 4443–4450. doi 10.1021/acs.jpcc.6b12991CrossRefGoogle Scholar
  62. 62.
    Burova, L.I., Petukhov, D.I., Eliseev, A.A., Lukashin, A.V., and Tretyakov, Y.D., Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix, Superlattices Microstruct., 2006, vol. 39, pp. 257–266. doi 10.1016/j.spmi.2005.08.047CrossRefGoogle Scholar
  63. 63.
    Chen, S.-F., Liu, C.-P., Eliseev, A.A., Petukhov, D.I., and Dhara, S., Confinement effects of CdSe nanocrystals intercalated into mesoporous silica, Appl. Phys. Lett., 2010, vol. 96, p. 111907. doi 10.1063/1.3340903CrossRefGoogle Scholar
  64. 64.
    Chizhov, A., Rumyantseva, M., Vasiliev, R., Filatova, D., Drozdov, K., Krylov, I., Marchevsky, A., Karakulina, O., Abakumov, A., and Gaskov, A., Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots, Thin Solid Films, 2016, vol. 618, pp. 253–262. doi 10.1016/j.tsf.2016.09.029CrossRefGoogle Scholar
  65. 65.
    Chizhov, A.S., Rumyantseva, M.N., Vasiliev, R.B., Filatova, D.G., Drozdov, K.A., Krylov, I.V., Abakumov, A.M., and Gaskov, A.M., Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots, Sens. Actuators, B, 2014, vol. 205, pp. 305–312. doi 10.1016/j.snb.2014.08.091CrossRefGoogle Scholar
  66. 66.
    Katsaba, A.V., Fedyanin, V.V., Ambrozevich, S.A., Vitukhnovsky, A.G., Sokolikova, M.S., and Vasiliev, R.B., Density of surface states in colloidal CdSe nanoplatelets, Semiconductors, 2015, vol. 49, pp. 1323–1326. doi 10.1134/S1063782615100103Google Scholar
  67. 67.
    Sakoda, K., Yao, Y., Kuroda, T., Dirin, D.N., and Vasiliev, R.B., Exciton states of CdTe tetrapod-shaped nanocrystals, Opt. Mater. Express, 2011, vol. 1, pp. 379–390. doi 10.1364/OME.1.000379CrossRefGoogle Scholar
  68. 68.
    Turchin, I.V., Balalaeva, I.V., Vasil’ev, R.B., Zlomanov, V., Plehanol, V., Orlova, A.G., Zagaynova, E.V., Kamensky, V.A., Kleshnin, M.S., Shirmanova, M.V., Dorofeev, S.G., and Dirin, D.M., Imaging of QDs -labeled tumors in small animals by fluorescence diffuse tomography, Laser Phys. Lett., 2006, vol. 3, pp. 208–211. doi 10.1002/lapl.200510086CrossRefGoogle Scholar
  69. 69.
    Vashchenko, A.A., Vitukhnovskii, A.G., Lebedev, V.S., Selyukov, A.S., Vasiliev, R.B., and Sokolikova, M.S., Organic light-emitting diode with an emitter based on a planar layer of CdSe semiconductor nanoplatelets, JETP Lett., 2014, vol. 100, pp. 86–90. doi 10.1134/S0021364014140124CrossRefGoogle Scholar
  70. 70.
    Vasiliev, R., Babynina, A., Maslova, O., Rumyantseva, M., Ryabova, L., Dobrovolsky, A., Drozdov, K., Khokhlov, D., Abakumov, A., and Gaskov, A., Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots, J. Mater. Chem. C, 2013, vol. 1, pp. 1005–1010. doi 10.1039/C2TC00236ACrossRefGoogle Scholar
  71. 71.
    Brazhe, N.A., Parshina, E.Y., Khabatova, V.V., Semenova, A.A., Brazhe, A.R., Yusipovich, A.I., Sarycheva, A.S., Churin, A.A., Goodilin, E.A., Maksimov, G.V., and Sosnovtseva, O.V., Tuning SERS for living erythrocytes: Focus on nanoparticle size and plasmon resonance position, J. Raman Spectrosc., 2013, vol. 44, pp. 686–694. doi 10.1002/jrs.4274CrossRefGoogle Scholar
  72. 72.
    Brazhe, N.A., Evlyukhin, A.B., Goodilin, E.A., Semenova, A.A., Novikov, S.M., Bozhevolnyi, S.I., Chichkov, B.N., Sarycheva, A.S., Baizhumanov, A.A., Nikelshparg, E.I., Deev, L.I., Maksimov, E.G., Maksimov, G.V., and Sosnovtseva, O., Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy, Sci. Rep., 2015, vol. 5, p. 13793. doi 10.1038/srep13793CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Eremina, O.E., Sidorov, A.V., Shekhovtsova, T.N., Goodilin, E.A., and Veselova, I.A., Novel multilayer nanostructured materials for recognition of polycyclic aromatic sulfur pollutants and express analysis of fuel quality and environmental health by surface enhanced Raman spectroscopy, ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 15058–15067. doi 10.1021/acsami.7b02018CrossRefPubMedGoogle Scholar
  74. 74.
    Parshina, E.Yu., Sarycheva, A.S., Yusipovich, A.I., Brazhe, N.A., Goodilin, E.A., and Maksimov, G.V., Combined Raman and atomic force microscopy study of hemoglobin distribution inside erythrocytes and nanoparticle localization on the erythrocyte surface, Laser Phys. Lett., 2013, vol. 10, p. 075607. doi 10.1088/1612-2011/10/7/075607CrossRefGoogle Scholar
  75. 75.
    Polyakov, A.Yu., Lebedev, V.A., Shirshin, E.A., Rumyantsev, A.M., Volikov, A.B., Zherebker, A., Garshev, A.V., Goodilin, E.A., and Perminova, I.V., Non-classical growth of water-redispersible spheroidal gold nanoparticles assisted by leonardite humate, CrystEngComm, 2017, vol. 19, pp. 876–886. doi 10.1039/C6CE02149BCrossRefGoogle Scholar
  76. 76.
    Sarycheva, A.S., Brazhe, N.A., Baizhumanov, A.A., Nikelshparg, E.I., Semenova, A.A., Garshev, A.V., Baranchikov, A.E., Ivanov, V.K., Maksimov, G.V., Sosnovtseva, O.V., and Goodilin, E.A., New nanocomposites for SERS studies of living cells and mitochondria, J. Mater. Chem. B, 2016, vol. 3, pp. 539–546. doi 10.1039/C5TB01886BCrossRefGoogle Scholar
  77. 77.
    Sarycheva, A.S., Ivanov, V.K., Baranchikov, A.E., Savilov, S.V., Sidorov, A.V., and Goodilin, E.A., Microbead silica decorated with polyhedral silver nanoparticles as a versatile component of sacrificial gel films for SERS applications, RSC Adv., 2015, vol. 5, pp. 90335–90342. doi 10.1039/C5RA16788DCrossRefGoogle Scholar
  78. 78.
    Semenova, A.A. and Goodilin, E.A., Surface enhanced Raman spectroscopy substrates with advanced spectral sensitivity prepared from five years old silver nanoplatelets, Funct. Mater. Lett., 2016, vol. 9, p. 1642003. doi 10.1142/S1793604716420030CrossRefGoogle Scholar
  79. 79.
    Semenova, A.A., Ivanov, V.K., Savilov, S.V., and Goodilin, E.A., Unusual silver nanostructures prepared by aerosol spray pyrolysis, CrystEngComm, 2013, vol. 15, pp. 7863–7871. doi 10.1039/C3CE41077CCrossRefGoogle Scholar
  80. 80.
    Semenova, A.A., Brazhe, N.A., Parshina, E.Y., Ivanov, V.K., Maksimov, G.V., and Goodilin, E.A., Aqueous diaminsilver hydroxide as a precursor of pure silver nanoparticles for SERS probing of living erythrocytes, Plasmonics, 2013, vol. 9, pp. 227–235. doi 10.1007/s11468-013-9616-9CrossRefGoogle Scholar
  81. 81.
    Semenova, A.A., Brazhe, N.A., Parshina, E.Y., Sarycheva, A.S., Maksimov, G.V., and Goodilin, E.A., A new route of SERS analysis of intact erythrocytes using polydisperse silver nanoplatelets on biocompatible scaffolds, RSC Adv., 2016, vol. 6, pp. 85156–85164. doi 10.1039/C6RA20372HCrossRefGoogle Scholar
  82. 82.
    Semenova, A.A., Goodilin, E.A., Brazhe, N.A., Ivanov, V.K., Baranchikov, A.E., Lebedev, V.A., Goldt, A.E., Sosnovtseva, O.V., Savilov, S.V., Egorov, A.V., Brazhe, A.R., Parshina, E.Y., Luneva, O.G., Maksimov, G.V., and Tretyakov, Yu.D., Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips, J. Mater. Chem., 2012, vol. 22, pp. 24530–24544. doi 10.1039/C2JM34686ACrossRefGoogle Scholar
  83. 83.
    Semenova, A.A., Semenov, A.P., Gudilina, E.A., Sinyukova, G.T., Brazhe, N.A., Maksimov, G.V., and Goodilin, E.A., Nanostructured silver materials for noninvasive medical diagnostics by surface-enhanced Raman spectroscopy, Mendeleev Commun., 2016, vol. 26, pp. 177–186. doi 10.1016/j.mencom.2016.04.001CrossRefGoogle Scholar
  84. 84.
    Sidorov, A.V., Vashkinskaya, O.E., Grigorieva, A.V., Shekhovtsova, T., Veselova, I.A., and Goodilin, E.A., Entrapment into charge transfer complexes for resonant Raman scattering enhancement, Chem. Commun., 2014, vol. 50, pp. 6468–6470. doi 10.1039/C4CC01550ACrossRefGoogle Scholar
  85. 85.
    Abakumov, M.A., Goldt, A.E., Sokolsky-Papkov, M., Zorkina, Y.A., Baklaushev, V.P., Goodilin, E.A., Kabanov, A.V., and Chekhonin, V.P., Magnetic resonance imaging of endothelial cells with vectorized iron oxide nanoparticles, Bull. Exp. Biol. Med., 2011, vol. 151, pp. 726–730.CrossRefPubMedGoogle Scholar
  86. 86.
    Chekanova, A.E., Dubov, A.L., Goodilin, E.A., Eremina, E.A., Birkner, A., Maximov, Yu.V., Suzdalev, I.P., Uvarov, V.N., Shevchenko, A.D., and Tretyakov, Yu.D., Soluble microcapsules for non-toxic magnetic fluids, Mendeleev Commun., 2009, vol. 19, pp. 4–6. doi 10.1016/j.mencom.2009.01.002CrossRefGoogle Scholar
  87. 87.
    Polyakov, A.Yu., Sorkina, T.A., Goldt, A.E., Pankratov, D.A., Perminova, I.V., and Goodilin, E.A., Mössbauer spectroscopy of frozen solutions as a stepwise control tool in preparation of biocompatible humic-stabilized feroxyhyte nanoparticles, Hyperfine Interact., 2013, vol. 219, pp. 113–120. doi 10.1007/s10751-013-0812-yCrossRefGoogle Scholar
  88. 88.
    Kushnir, S.E., Koshkodaev, D.S., Kazin, P.E., Zuev, D.M., Zaytsev, D.D., and Jansen, M., Rapid formation of a monolayer of oriented hard-magnetic strontium hexaferrite nanoparticles on a solid substrate, Adv. Eng. Mater., 2014, vol. 16, pp. 884–888. doi 10.1002/adem.201300448CrossRefGoogle Scholar
  89. 89.
    Kushnir, S.E., Gavrilov, A.I., Kazin, P.E., Grigorieva, A.V., Tretyakov, Yu.D., and Jansen, M., Synthesis of colloidal solutions of SrFe12O19 plate-like nanoparticles featuring extraordinary magnetic-field-dependent optical transmission, J. Mater. Chem., 2012, vol. 22, pp. 18893–18901. doi 10.1039/C2JM33874BCrossRefGoogle Scholar
  90. 90.
    Trusov, L.A., Gorbachev, E.A., Lebedev, V.A., Sleptsova, A.E., Roslyakov, I.V., Kozlyakova, E., Vasiliev, A.V., Dinnebier, R.E., Jansen, M., and Kazin, P.E., Ca–Al double-substituted strontium hexaferrites with giant coercivity, Chem. Commun., 2018, vol. 54, pp. 479–482. doi 10.1039/C7CC08675JCrossRefGoogle Scholar
  91. 91.
    Chernova, E., Petukhov, D., Boytsova, O., Alentiev, A., Budd, P., Yampolskii, Yu., and Eliseev, A., Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes, Sci. Rep., 2016, vol. 6, p. 31183. doi 10.1038/srep31183CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Napolskii, K.S., Roslyakov, I.V., Romanchuk, A.Y., Kapitanova, O.O., Mankevich, A.S., Lebedev, V.A., and Eliseev, A.A., Origin of long-range orientational pore ordering in anodic films on aluminium, J. Mater. Chem., 2012, vol. 22, pp. 11922–11926. doi 10.1039/C2JM31710ACrossRefGoogle Scholar
  93. 93.
    Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Byelov, D.V., Petukhov, A.V., Grigoryeva, N.A., Bouwman, W.G., Lukashin, A.V., Chumakov, A.P., and Grigoriev, S.V., The kinetics and mechanism of long-range pore ordering in anodic films on aluminum, J. Phys. Chem. C, 2011, vol. 115, pp. 23726–23731. doi 10.1021/jp207753vCrossRefGoogle Scholar
  94. 94.
    Petukhov, D.I., Berekchiian, M.V., Pyatkov, E.S., Solntsev, K.A., and Eliseev, A.A., Experimental and theoretical study of enhanced vapor transport through nanochannels of anodic alumina membranes in a capillary condensation regime, J. Phys. Chem. C, 2016, vol. 120, pp. 10982–10990. doi 10.1021/acs.jpcc.6b02971CrossRefGoogle Scholar
  95. 95.
    Petukhov, D.I. and Eliseev, A.A., Gas permeation through nanoporous membranes in the transitional flow region, Nanotechnology, 2016, vol. 27, p. 085707. doi 10.1088/0957-4484/27/8/085707CrossRefPubMedGoogle Scholar
  96. 96.
    Petukhov, D.I., Napolskii, K.S., Berekchiyan, M.V., Lebedev, A.G., and Eliseev, A.A., Comparative study of structure and permeability of porous oxide films on aluminum obtained by single- and two-step anodization, ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 7819–7824. doi 10.1021/am401585qCrossRefPubMedGoogle Scholar
  97. 97.
    Roslyakov, I.V., Koshkodaev, D.S., Eliseev, A.A., Hermida-Merino, D., Petukhov, A.V., and Napolskii, K.S., Crystallography-induced correlations in pore ordering of anodic alumina films, J. Phys. Chem. C, 2016, vol. 120, pp. 19698–19704. doi 10.1021/acs.jpcc.6b05268CrossRefGoogle Scholar
  98. 98.
    Grigorieva, A.V., Badalyan, S.M., Goodilin, E.A., Rumyantseva, M.N., Gaskov, A.M., Birkner, A., and Tretyakov, Yu.D., Synthesis, structure, and sensor properties of vanadium pentoxide nanorods, Eur. J. Inorg. Chem., 2010, vol. 33, pp. 5247–5253. doi 10.1002/ejic.201000372CrossRefGoogle Scholar
  99. 99.
    Grigorieva, A.V., Goodilin, E.A., Anikina, A.V., Kollesnik, I.V., and Tretyakov, Yu.D., Surfactants in the formation of vanadium oxide nanotubes, Mendeleev Commun., 2008, vol. 18, pp. 71–72. doi 10.1016/j.mencom.2008.03.004CrossRefGoogle Scholar
  100. 100.
    Grigorieva, A.V., Goodilin, E.A., Derlyukova, L.E., Anufrieva, T.A., Tarasov, A.B., Dobrovolskii, Yu.A., and Tretyakov, Yu.D., Titania nanotubes supported platinum catalyst in CO oxidation process, Appl. Catal., A, 2009, vol. 362, pp. 20–25. doi 10.1016/j.apcata.2009.04.011Google Scholar
  101. 101.
    Grigorieva, A.V., Tarasov, A.B., Goodilin, E.A., Badalyan, S.M., Rumyantseva, M.N., Gaskov, A.M., Birkner, A., and Tretyakov, Yu.D., Sensor properties of vanadium oxide nanotubes, Mendeleev Commun., 2008, vol. 18, pp. 6–7. doi 10.1016/j.mencom. 2008.01.002CrossRefGoogle Scholar
  102. 102.
    Polyakov, A.Yu., Zak, A., Tenne, R., Goodilin, E.A., and Solntsev, K.A., Nanocomposites based on tubular and onion nanostructures of molybdenum and tungsten disulfides: inorganic design, functional properties and application, Russ. Chem. Rev., 2018, vol. 87, pp. 251–271. doi 10.1070/RCR4798CrossRefGoogle Scholar
  103. 103.
    Polyakov, A.Yu., Yadgarov, L., Popovitz-Biro, R., Lebedev, V.A., Pinkas, I., Rosentsveig, R., Feldman, Y., Goldt, A.E., Goodilin, E.A., and Tenne, R., Decoration of WS2 nanotubes and fullerene-like MoS2 with gold nanoparticles, J. Phys. Chem. C, 2014, vol. 118, pp. 2161–2169. doi 10.1021/jp407388hCrossRefGoogle Scholar
  104. 104.
    Eliseev, A.A., Verbitskiy, N.I., Volykhov, A.A., Fedorov, A.V., Vilkov, O.Y., Verbitskiy, I.I., Brzhezinskaya, M.M., Kiselev, N.A., and Yashina, L.V., The impact of dimensionality and stoichiometry of CuBr on its coupling to sp 2-carbon, Carbon, 2016, vol. 99, pp. 619–623. doi 10.1016/j.carbon.2015.12.031CrossRefGoogle Scholar
  105. 105.
    Eliseev, A.A., Yashina, L.V., Brzhezinskaya, M.M., Chernysheva, M.V., Kharlamova, M.V., Verbitsky, N.I., Lukashin, A.V., Kiselev, N.A., Kumskov, A.S., Zakalyuhin, R.M., Hutchison, J.L., Freitag, B., and Vinogradov, A.S., Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes, Carbon, 2010, vol. 48, pp. 2708–2721. doi 10.1016/j.carbon.2010.02.037CrossRefGoogle Scholar
  106. 106.
    Eliseev, A.A., Yashina, L.V., Verbitskiy, N.I., Brzhezinskaya, M.M., Kharlamova, M.V., Chernysheva, M.V., Lukashin, A.V., Kiselev, N.A., Kumskov, A.S., Freitag, B., Generalov, A.V., Vinogradov, A.S., Zubavichus, Y.V., Kleimenov, E., and Nachtegaal, M., Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures, Carbon, 2012, vol. 50, pp. 4021–4039. doi 10.1016/j.carbon.2012.04.046CrossRefGoogle Scholar
  107. 107.
    Eliseev, A.A., Falaleev, N.S., Verbitskiy, N.I., Volykhov, A.A., Yashina, L.V., Kumskov, A., Zhigalina, V.G., Vasiliev, A.L., Lukashin, A.V., and Sloan, J., Size-dependent structure relations between nanotubes and encapsulated nanocrystals, Nano Lett., 2017, vol. 17, pp. 805–810. doi 10.1021/acs.nanolett.6b04031CrossRefPubMedGoogle Scholar
  108. 108.
    Eliseev, An.A., Kumskov, A.S., Falaleev, N.S., Zhigalina, V.S., Eliseev, Ar.A., Mitrofanov, A.A., Petukhov, D.I., Vasiliev, A.L., and Kisilev, N.A., Mass transport through defects in graphene layers, J. Phys. Chem. C, 2017, vol. 121, pp. 23669–23675. doi 10.1021/acs.jpcc.7b06100CrossRefGoogle Scholar
  109. 109.
    Eliseev, A.A., Chernysheva, M.V., Verbitskiy, N.I., Kiseleva, E.A., Lukashin, A.V., Tretyakov, Yu.D., Kiselev, N.A., Zhigalina, O.M., Zakalyukin, R.M., Vasiliev, A.L., Krestinin, A.V., Hutchison, J.L., and Freitag, B., Chemical reactions within single-walled carbon nanotube channels, Chem. Mater., 2009, vol. 21, pp. 5001–5003. doi 10.1021/cm803457fCrossRefGoogle Scholar
  110. 110.
    Tretyakov, Y.D., Lukashin, A.V., and Eliseev, A.A., Synthesis of functional nanocomposites based on solid-phase nanoreactors, Russ. Chem. Rev., 2004, vol. 73, p. 899.CrossRefGoogle Scholar
  111. 111.
    Lukatskaya, M.R., Trusov, L.A., Eliseev, A.A., Lukashin, A.V., Jansen, M., Kazin, P.E., and Napolskii, K.S., Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina, Chem. Commun., 2011, vol. 47, pp. 2396–2398. doi 10.1039/C0CC04394JCrossRefGoogle Scholar
  112. 112.
    Chernysheva, M.V., Eliseev, A.A., Napolskii, K.S., Lukashin, A.V., Tretyakov, Y.D., Grigoryeva, N.A., Grigoryev, S.V., and Wolff, M., Ordered nanowire arrays in the mesoporous silica thin films, Thin Solid Films, 2006, vol. 495, pp. 73–77. doi 10.1016/j.tsf.2005.08.295CrossRefGoogle Scholar
  113. 113.
    Eliseev, A.A., Kharlamova, M.V., Chernysheva, M.V., Lukashin, A.V., Tretyakov, Yu.D., Kumskov, A.S., and Kiselev, N.A., Preparation and properties of single-walled nanotubes filled with inorganic compounds, Russ. Chem. Rev., 2009, vol. 78, pp. 833–854. doi 10.1070/RC2009v078n09ABEH004077CrossRefGoogle Scholar
  114. 114.
    Eliseev, A.A., Kolesnik, I.V., Lukashin, A.V., and Tretyakov, Y.D., Mesoporous systems for the preparation of ordered magnetic nanowire arrays, Adv. Eng. Mater., 2005, vol. 7, pp. 213–217. doi 10.1002/adem.200400176CrossRefGoogle Scholar
  115. 115.
    Lukatskaya, M.R., Trusov, L.A., Eliseev, A.A., Lukashin, A.V., Jansen, M., Kazin, P.E., and Napolskii, K.S., Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina, Chem. Commun., 2011, vol. 47, pp. 2396–2398. doi 10.1039/C0CC04394JCrossRefGoogle Scholar
  116. 116.
    Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Petukhov, D.I., Lukashin, A.V., Chen, S.-F., Liu, C.-P., and Tsirlina, G.A., Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential, Electrochim. Acta, 2011, vol. 56, pp. 2378–2384. doi 10.1016/j.electacta.2010.12.013CrossRefGoogle Scholar
  117. 117.
    Kushnir, S.E., Kazin, P.E., Trusov, L.A., and Tretyakov, Yu.D., Self-organization of micro- and nanoparticles in ferrofluids, Russ. Chem. Rev., 2012, vol. 81, pp. 560–570. doi 10.1070/RC2012v081n06ABEH004250CrossRefGoogle Scholar
  118. 118.
    Shlenskaya, N.N., Yao, Y., Mano, T., Kuroda, T., Garshev, A.V., Kozlovsky, V.F., Gaskov, A.M., Vasiliev, R.B., and Sakoda, K., Scroll-like alloyed CdSxSe1 – x nanoplatelets: Facile synthesis and detailed analysis of tunable optical properties, Chem. Mater., 2017, vol. 29, pp. 579–586. doi 10.1021/acs.chemmater.6b03876CrossRefGoogle Scholar
  119. 119.
    Fadeeva, I.V., Filippov, Ya.Yu., Fomin, A.S., Petrakova, N.V., Knotko, A.V., Ryzhov, A.P., Putlyaev, V.I., and Barinov, S.M., Microstructure and properties of α-tricalcium phosphate-based bone cement, Inorg. Mater., 2017, vol. 53, pp. 292–299. doi 10.1134/S0020168517030049CrossRefGoogle Scholar
  120. 120.
    Goreninskii, S.I., Bogomolova, N.N., Malchikhina, A.I., Golovkin, A.S., Bolbasov, E.N., Safronova, T.V., Putlyaev, V.I., and Tverdokhlebov, S.I., Biological effect of the surface modification of the fibrous poly(L-lactic acid) scaffolds by radio frequency magnetron sputtering of different calcium-phosphate targets, BioNanoScience, 2017, vol. 7, pp. 50–57. doi 10.1007/s12668-016-0383-xCrossRefGoogle Scholar
  121. 121.
    Putlyaev, V.I., Evdokimov, P.V., Safronova, T.V., Klimashina, E.S., and Orlov, N.K., Fabrication of osteoconductive Ca3 – xM2x(PO4)2 (M = Na, K) calcium phosphate bioceramics by stereolithographic 3D printing, Inorg. Mater., 2017, vol. 53, pp. 529–535. doi 10.1134/S0020168517050168CrossRefGoogle Scholar
  122. 122.
    Putlyaev, V.I., Safronova, T.V., Filippov, Ya.Yu., and Evdokimov, P.V., Colloidal forming of chemically bonded calcium phosphate composites, Inorg. Mater.: Appl. Res., 2017, vol. 8, pp. 153–158. doi 10.1134/S2075113317010312CrossRefGoogle Scholar
  123. 123.
    Putlyaev, V.I., Evdokimov, P.V., Filippov, Ya.Yu., Safronova, T.V., and Tikhonov, A.A., Investigation of highly concentrated calcium phosphate suspensions for forming bioceramic with complex architecture, Glass Ceram., 2018, vol. 74, pp. 378–381. doi 10.1007/s10717-018-9998-4CrossRefGoogle Scholar
  124. 124.
    Ievlev, V.M., Putlyaev, V.I., Safronova, T.V., and Evdokimov, P.V., Additive technologies for making highly permeable inorganic materials with tailored morphological architectonics for medicine, Inorg. Mater., 2015, vol. 51, pp. 1295–1313. doi 10.1134/S0020168515130038CrossRefGoogle Scholar
  125. 125.
    Evdokimov, P.V., Putlyaev, V.I., Ievlev, V.M., Klimashina, E.S., and Safronova, T.V., Osteoconductive ceramics with a specified system of interconnected pores based on double calcium alkali metal phosphates, Dokl. Chem., 2015, vol. 460, pp. 61–65. doi 10.1134/S0012500815020056CrossRefGoogle Scholar
  126. 126.
    Surmeneva, M.A., Surmenev, R.A., Nikonova, Y.A., Selezneva, I.I., Ivanova, A.A., Putlyaev, V.I., Prymak, O., and Epple, M., Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications, Appl. Surf. Sci., 2014, vol. 317, pp. 172–180. doi 10.1016/j.apsusc.2014.08.104CrossRefGoogle Scholar
  127. 127.
    Aleshin, G.Yu., Semenenko, D.A., Belova, A.I., Zakharchenko, T.K., Itkis, D.M., Goodilin, E.A., and Tretyakov, Yu.D., Protected anodes for lithium-air batteries, Solid State Ionics, 2011, vol. 184, pp. 62–64. doi 10.1016/j.ssi.2010.09.018CrossRefGoogle Scholar
  128. 128.
    Itkis, D.M., Semenenko, D.A., Kataev, E.Yu., Belova, A.I., Neudachina, V.S., Sirotina, A.P., Hävecker, M., Teschner, D., Knop-Gericke, A., Dudin, P., Barinov, A., Goodilin, E.A., Shao-Horn, Y., and Yashina, L.V., Reactivity of carbon in lithium-oxygen battery positive electrodes, Nano Lett., 2013, vol. 13, pp. 4697–4701. doi 10.1021/nl4021649CrossRefPubMedGoogle Scholar
  129. 129.
    Krivchenko, V.A., Itkis, D.M., Evlashin, S.A., Semenenko, D.A., Goodilin, E.A., Rakhimov, A.T., Stepanov, A.S., Suetin, N.V., Pilevsky, A.A., and Voronin, P.V., Carbon nanowalls decorated with silicon for lithium-ion batteries, Carbon, 2012, vol. 50, pp. 1438–1442. doi 10.1016/j.carbon.2011.10.042CrossRefGoogle Scholar
  130. 130.
    Pomerantseva, E.A., Kulova, T.L., Zeng, D., Skundin, A.M., Grey, C.P., Goodilin, E.A., and Tretyakov, Yu.D., Chemically modified Ba6Mn24O48 tunnel manganite as a lithium insertion host, Solid State Ionics, 2010, vol. 181, pp. 1002–1008. doi 10.1016/j.ssi.2010.05.038CrossRefGoogle Scholar
  131. 131.
    Semenenko, D.A., Itkis, D.M., Kulova, T.L., Yashuk, T.S., Skundin, A.M., Goodilin, E.A., and Tretyakov, Y.D., Fabrication of microporous cathode materials containing polyaniline-vanadia self-scrolled nanoribbons, Electrochim. Acta, 2012, vol. 63, pp. 329–334. doi 10.1016/j.electacta.2011.12.116CrossRefGoogle Scholar
  132. 132.
    Semenenko, D.A., Itkis, D.M., Pomerantseva, E.A., Goodilin, E.A., Kulova, T.L., Skundin, A.M., and Tretyakov, Yu.D., LixV2O5 nanobelts for high capacity lithium-ion battery cathodes, Electrochem. Commun., 2010, vol. 12, pp. 1154–1157. doi 10.1016/j.elecom.2010.05.045CrossRefGoogle Scholar
  133. 133.
    Semenenko, D.A., Kozmenkova, A.Ya., Itkis, D.M., Goodilin, E.A., Kulova, T.L., Skundin, A.M., and Tretyakov, Yu.D., Growth of thin vanadia nanobelts with improved lithium storage capacity in hydrothermally aged vanadia gels, CrystEngComm, 2012, vol. 14, pp. 1561–1567. doi 10.1039/C1CE05802ACrossRefGoogle Scholar
  134. 134.
    Sergeev, A.V., Chertovich, A.V., Itkis, D.M., Goodilin, E.A., and Khokhlov, A.R., Effects of cathode and electrolyte properties on lithium-air battery performance: Computational study, J. Power Sources, 2015, vol. 279, pp. 707–712. doi 10.1016/j.jpowsour. 2015.01.024CrossRefGoogle Scholar
  135. 135.
    Suetin, N.V., Evlashin, S.A., Egorov, A.V., Mironovich, K.V., Dagesyan, S.A., Yashina, L.V., Goodilin, E.A., and Krivchenko, V.A., Self-assembled nanoparticle patterns on carbon nanowall surfaces, Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 12344–12349. doi 10.1039/C6CP01638CCrossRefPubMedGoogle Scholar
  136. 136.
    Zakharchenko, T.K., Kozmenkova, A.Y., Itkis, D.M., and Goodilin, E.A., Lithium peroxide crystal clusters as a natural growth feature of discharge products in Li–O2 cells, Beilstein J. Nanotechnol., 2013, vol. 4, pp. 758–762. doi 10.3762/bjnano.4.86CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Belova, A.I., Kwabi, D.G., Yashina, L.V., Shao-Horn, Y., and Itkis, D.M., Mechanism of oxygen reduction in aprotic Li–air batteries: The role of carbon electrode surface structure, J. Phys. Chem. C, 2017, vol. 121, pp. 1569–1577. doi 10.1021/acs.jpcc.6b12221CrossRefGoogle Scholar
  138. 138.
    Itkis, D.M., Velasco-Velez, J.J., Knop-Gericke, A., Vyalikh, A., Avdeev, M.V., and Yashina, L.V., Probing operating electrochemical interfaces by photons and neutrons, ChemElectroChem, 2015, vol. 2, pp. 1427–1445. doi 10.1002/celc.201500155CrossRefGoogle Scholar
  139. 139.
    Kapitanova, O.O., Kataev, E.Yu., Usachov, D.Yu., Sirotina, A.P., Belova, A.I., Sezen, H., Amati, M., Al-Hada, M., Gregoratti, L., Barinov, A., Cho, H.D., Kang, T.W., Panin, G.N., Vyalikh, D.V., Itkis, D.M., et al., Laterally selective oxidation of large-scale graphene with atomic oxygen, J. Phys. Chem. C, 2017, vol. 121, pp. 27915–27922. doi 10.1021/acs. jpcc.7b07840CrossRefGoogle Scholar
  140. 140.
    Kataev, E.Yu., Itkis, D.M., Fedorov, A.V., Senkovskiy, B.V., Usachov, D.Yu., Verbitskiy, N.I., Grueneis, A., Barinov, A., Tsukanova, D.Yu., Volykhov, A.A., Mironovich, K.V., Krivchenko, V.A., Rybin, M.G., Obraztsova, E.D., Laubschat, C., et al., Oxygen reduction by lithiated graphene and graphene-based materials, ACS Nano, 2015, vol. 9, pp. 320–326. doi 10.1021/nn5052103CrossRefPubMedGoogle Scholar
  141. 141.
    Kozmenkova, A.Ya., Kataev, E.Yu., Belova, A.I., Amati, M., Gregoratti, L., Velasco-Velez, J., Knop-Gericke, A., Senkovskiy, B., Vyalikh, D.V., Itkis, D.M., Shao-Horn, Y., and Yashina, L.V., Tuning surface chemistry of TiC electrodes for lithium–air batteries, Chem. Mater., 2016, vol. 28, pp. 8248–8255. doi 10.1021/acs.chemmater.6b03195CrossRefGoogle Scholar
  142. 142.
    Kwabi, D.G., Bryantsev, V.S., Batcho, T.P., Itkis, D.M., Thompson, C.V., and Shao-Horn, Y., Experimental and computational analysis of the solvent-dependent O2/Li+-O2 redox couple: Standard potentials, coupling strength, and implications for lithium–oxygen batteries, Angew. Chem., Int. Ed., 2016, vol. 55, pp. 3129–3134. doi 10.1002/anie.201509143CrossRefGoogle Scholar
  143. 143.
    Mironovich, K.V., Itkis, D.M., Semenenko, D.A., Dagesian, S.A., Yashina, L.V., Kataev, E.Yu., Mankelevich, Yu.A., Suetin, N.V., and Krivchenko, V.A., Tailoring of the carbon nanowall microstructure by sharp variation of plasma radical composition, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 25621–25627. doi 10.1039/C4CP03956DCrossRefPubMedGoogle Scholar
  144. 144.
    Sergeev, A.V., Chertovich, A.V., and Itkis, D.M., Modeling of the lithium-air battery cathodes with broad pore size distribution, Chem. Phys. Lett., 2016, vol. 660, pp. 149–154. doi 10.1016/j.cplett.2016.08.012CrossRefGoogle Scholar
  145. 145.
    Kurilenko, K.A., Shlyakhtin, O.A., Petukhov, D.I., and Garshev, A.V., Effect of CeO2 coprecipitation on the electrochemical performance of Li(Li,Ni,Mn,Co)O2-CeO2-C composite cathode materials, J. Power Sources, 2017, vol. 354, pp. 189–199. doi 10.1016/j.jpowsour.2017.04.001CrossRefGoogle Scholar
  146. 146.
    Kurilenko, K.A., Shlyakhtin, O.A., Brylev, O.A., and Drozhzhin, O.A., The effect of synthesis conditions on the morphology, cation disorder and electrochemical performance of Li1 + xNi0.5Mn0.5O2, Electrochim. Acta, 2015, vol. 152, pp. 255–264. doi 10.1016/j.electacta.2014.11.045CrossRefGoogle Scholar
  147. 147.
    Petrov, A.A., Belich, N.A., Grishko, A.Y., Stepanov, N.M., Dorofeev, S.G., Maksimov, E.G., Shevelkov, A.V., Zakeeruddin, S.M., Graetzel, M., Tarasov, A.B., and Goodilin, E.A., A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts, Mater. Horiz., 2017, vol. 4, pp. 625–632. doi 10.1039/C7MH00201GCrossRefGoogle Scholar
  148. 148.
    Petrov, A.A., Pellet, N., Seo, J.-Y., Belich, N.A., Kovalev, D.Yu., Shevelkov, A.V., Goodilin, E.A., Zakeeruddin, S.M., Tarasov, A.B., and Graetzel, M., New insight into the formation of hybrid perovskite nanowires via structure directing adducts, Chem. Mater., 2016, vol. 29, pp. 587–594. doi 10.1021/acs.chemmater.6b03965CrossRefGoogle Scholar
  149. 149.
    Petrov, A.A., Sokolova, Iu.P., Belich, N.A., Peters, G.S., Dorovatovskii, P.V., Zubavichus, Y.V., Khrustalev, V.N., Petrov, A.V., Grätzel, M., Goodilin, E.A., and Tarasov, A.B., Crystal structure of DMF-intermediate phases uncovers the link between CH3NH3PbI3 morphology and precursor’s stoichiometry, J. Phys. Chem. C, 2017, vol. 121, pp. 20739–20743. doi 10.1021/acs.jpcc.7b08468CrossRefGoogle Scholar
  150. 150.
    Shlenskaya, N.N., Belich, N.A., Grätzel, M., Goodilin, E.A., and Tarasov, A.B., Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells, J. Mater. Chem. A, 2017, vol. 6, pp. 1780–1786. doi 10.1039/C7TA10217HCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Gudilin
    • 1
    Email author
  • A. A. Semenova
    • 1
  • A. A. Petrov
    • 1
  • A. B. Tarasov
    • 1
  • A. V. Lukashin
    • 1
  • K. A. Solntsev
    • 1
  1. 1.Faculty of Materials Science, Moscow State UniversityMoscowRussia

Personalised recommendations