Inorganic Materials

, Volume 54, Issue 12, pp 1183–1186 | Cite as

Formation of Cobalt Impurity Microinclusions in Silicon Single Crystals

  • N. A. TurgunovEmail author


The structure and chemical composition of cobalt impurity microinclusions in silicon have been studied by electron probe microanalysis using n- and p-type Si〈Co〉 samples prepared by diffusion doping and cooled at different rates after diffusion annealing. The cooling rate after diffusion annealing has been shown to have a significant effect on the structural parameters of the samples and the size of the forming impurity microinclusions. The size and shape of the impurity microinclusions determine their distribution over the bulk of the samples.


cobalt microinclusions electron probe microanalysis cooling rate cobalt silicide 



  1. 1.
    Zainabidinov, S.Z., Fizicheskie osnovy obrazovaniya glubokikh urovnei v kremnii (Physical Mechanisms of Deep Level Formation in Silicon), Tashkent: Fan, 1984.Google Scholar
  2. 2.
    Fistul’, V.I., Atomy legiruyushchikh primesei v poluprovodnikakh (Dopant Atoms in Semiconductors), Moscow: Nauka, 2004.Google Scholar
  3. 3.
    Gorelik, S.S. and Dashevskii, M.Ya., Materialovedenie poluprovodnikov i dielektrikov (Semiconductor and Dielectric Materials Research), Moscow: Nauka, 2003.Google Scholar
  4. 4.
    Zainabidinov, S.Z., Turaev, A.R., Karimberdiev, Kh.Kh., and Kholbekov, A., Influence of cooling rate on the formation of impurity silicides in Si, Turkish J. Phys., 1994, no. 2, pp. 129–132.Google Scholar
  5. 5.
    Zainabidinov, S.Z., Musaev, K.N., Turgunov, N.A., and Turaev, A.R., Dopant microassociation mechanisms in Si〈Mn〉 and Si〈Ni〉, Inorg. Mater., 2012, vol. 48, no. 11, pp. 1065–1069.CrossRefGoogle Scholar
  6. 6.
    Feklisova, O.V. and Yakimov, E.B., Electrical properties of plastically deformed silicon due to its interaction with an iron impurity, Phys. Solid State, 2011, vol. 53, no. 6, pp. 1240–1243.CrossRefGoogle Scholar
  7. 7.
    Boltaks, B.I., Diffuziya v poluprovodnikakh (Diffusion in Semiconductors), Moscow: Fizmatgiz, 1961.Google Scholar
  8. 8.
    Lendvai, J., Ungar, T., and Kovacs, I., Precipitation processes in Cu–Co–Si alloys, J. Mater. Sci., 1988, vol. 23, pp. 4059–4065.CrossRefGoogle Scholar
  9. 9.
    Bergholz, W. and Schröter, W., Precipitation of cobalt in silicon studied by Mössbauer spectroscopy, Phys. Status Solidi A, 1978, vol. 49, no. 2, pp. 489–498.CrossRefGoogle Scholar
  10. 10.
    Hong, S.J., Yang, H.J., Kim, J.Y., Shin, H.J., Lee, J.H., Ko, Y.K., Kang, B.J., Cho, B.S., Jeong, C.O., Chung, K.H., and Lee, C.M., Effects of Co precipitation on Si diffusion in Ag(Co)/Si during postannealing, J. Korean Phys. Soc., 2002, vol. 41, no. 4, pp. 417–421.Google Scholar
  11. 11.
    Bulyarskii, S.V. and Fistul’, V.I., Termodinamika i kinetika vzaimodeistvuyushchikh defektov v poluprovodnikakh (Thermodynamics and Kinetics of Interacting Defects in Semiconductors), Moscow: Nauka, 1997.Google Scholar
  12. 12.
    Murarka, S.P., Silicides for VLSI Applications, New York: Academic, 1983.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.The Academy of the Ministry of Internal Affairs of the Republic of UzbekistanTashkentUzbekistan

Personalised recommendations