Advertisement

Inorganic Materials

, Volume 54, Issue 12, pp 1267–1273 | Cite as

Preparation of NZP-Type Ca0.75 + 0.5xZr1.5Fe0.5(PO4)3 –x(SiO4)x Powders and Ceramic, Thermal Expansion Behavior

  • D. O. SavinykhEmail author
  • S. A. Khainakov
  • M. S. Boldin
  • A. I. Orlova
  • A. A. Aleksandrov
  • E. A. Lantsev
  • N. V. Sakharov
  • A. A. Murashov
  • S. Garcia-Granda
  • A. V. Nokhrin
  • V. N. Chuvil’deev
Article
  • 10 Downloads

Abstract

Ca0.75 + 0.5xZr1.5Fe0.5(PO4)3 –x(SiO4)x (x = 0–0.5) solid solutions have been synthesized by a sol–gel process and characterized by X-ray diffraction, IR spectroscopy, and differential scanning calorimetry. As expected, the synthesized phosphatosilicates crystallize in a NaZr2(PO4)3-type structure (trigonal symmetry, sp. gr. R\(\bar {3}\)c). The thermal expansion of the solid solutions has been studied by high-temperature X-ray diffraction in the temperature range from 25 to 800°C. Their thermal expansion parameters have been calculated and analyzed as functions of composition. High-density ceramics based on the Ca0.875Zr1.5Fe0.5(PO4)2.75(SiO4)0.25 phosphatosilicate have been produced by spark plasma sintering and their structure and properties have been studied in detail.

Keywords:

NZP phosphatosilicate sol–gel process X-ray diffraction solid solution thermal expansion SPS 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 16-13-10464: Advanced ceramic like mineral materials with improved and adjustable service characteristics: design, synthesis, study.

REFERENCES

  1. 1.
    Orlova, A.I., Volkov, Yu.F., Melkaya, R.F., et al., Synthesis and radiation resistance of NZP-type phosphates containing f-elements, Radiokhimiya, 1994, vol. 36, no. 4, pp. 295–298.Google Scholar
  2. 2.
    Orlova, A.I., Volgutov, V.Yu., Mikhailov, D.A., et al., Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: synthesis of a dense ceramic material and its radiation testing, J. Nucl. Mater., 2014, vol. 446, pp. 232–239.CrossRefGoogle Scholar
  3. 3.
    Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A., Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, vol. 11, pp. 203–220.CrossRefGoogle Scholar
  4. 4.
    Bykov, D.M., Shekhtman, G.Sh., Orlova, A.I., et al., Multivalent ionic conductivity in the series of phosphates LaxYb1/3 − xZr2(PO4)3 with NASICON structure, Solid State Ionics, 2011, vol. 182, pp. 47–52.CrossRefGoogle Scholar
  5. 5.
    Kumar, S. and Balaya, P., Improved ionic conductivity in NASICON-type Sr2+ doped LiZr2(PO4)3, Solid State Ionics, 2016, vol. 296, pp. 1–6.CrossRefGoogle Scholar
  6. 6.
    Agaskar, P.A., Grasselli, R.K., Buttrey, D.J., and White, B., Structural and catalytic aspects of some NASICON-based mixed metal phosphates, Stud. Surf. Sci. Catal., 1997, vol. 110, pp. 219–226.CrossRefGoogle Scholar
  7. 7.
    Orlova, A.I., Kanunov, A.E., Gorshkova, E.N., et al., Synthesis, luminescence, and biocompatibility of calcium- and lanthanide-containing NaZr2(PO4)3-type compounds, Inorg. Mater., 2013, vol. 49, no. 1, pp. 89–94.CrossRefGoogle Scholar
  8. 8.
    Kanunov, A.E., Glorieux, B., Orlova, A.I., et al., Synthesis, structure and luminescence properties of phosphates A1 – 3xEuxZr2(PO4)3 (A—alkali metal), Bull. Mater. Sci., 2017, vol. 40, pp. 7–16.CrossRefGoogle Scholar
  9. 9.
    Lenain, G.E., McKinstry, H.A., Limaye, S.Y., and Woodward, A., Low thermal expansion of alkali–zirconium phosphates, Mater. Res. Bull., 1984, vol. 19, no. 11, pp. 1451–1456.CrossRefGoogle Scholar
  10. 10.
    Limaye, S.Y., Agrawal, D.K., and McKinstry, H.A., Synthesis and thermal expansion of MZr4P6O24(M = Mg, Ca, Sr, Ba), J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 232–236.CrossRefGoogle Scholar
  11. 11.
    Volgutov, V.Yu. and Orlova, A.I., Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R 0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1 – x)Zr0.25xZr2(PO4)3, Crystallogr. Rep., 2015, vol. 60, no. 5, pp. 721–728.CrossRefGoogle Scholar
  12. 12.
    Oikonomou, P., Dedeloudis, Ch., Stournaras, C.J., and Ftikos, Ch., [NZP]: a new family of ceramics with low thermal expansion and tunable properties, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1253–1258.CrossRefGoogle Scholar
  13. 13.
    Sukhanov, M.V., Pet’kov, V.I., and Firsov, D.V., Sintering mechanism for high-density NZP ceramics, Inorg. Mater., 2011, vol. 47, no. 6, pp. 674–678.CrossRefGoogle Scholar
  14. 14.
    Orlova, A.I., Koryttseva, A.K., Kanunov, A.E., et al., Fabrication of NZP-type ceramic materials by spark plasma sintering, Inorg. Mater., 2012, vol. 48, no. 3, pp. 313–317.CrossRefGoogle Scholar
  15. 15.
    Hagman, L. and Kierkegaard, P., The crystal structure of Na\({\text{M}}_{2}^{{{\text{IV}}}}\)(PO4)3; MeIV = Ge, Ti, Zr, Acta Chem. Scand., 1968, vol. 22, pp. 1822–1832.CrossRefGoogle Scholar
  16. 16.
    Orlova, A.I., Isomorphism of crystalline NaZr2(PO4)3-type phosphates and radiochemical problems, Radiokhimiya, 2002, vol. 44, no. 5, pp. 385–403.Google Scholar
  17. 17.
    Volkov, Yu.F. and Orlova, A.I., Sistematika i kristallokhimicheskii aspekt neorganicheskikh soedinenii s odnoyadernymi tetraedricheskimi oksoanionami (Systematics and Crystal-Chemical Aspect of Inorganic Compounds with Mononuclear Tetrahedral Oxyanions), Dimitrovgrad: FGUP “GNTs RF NIIAR”, 2004.Google Scholar
  18. 18.
    Roy, R., Agrawal, D.K., Alamo, J., and Roy, R.A., [CTP]: a new structural family of near-zero expansion ceramics, Mater. Res. Bull., 1984, vol. 19, no. 4, pp. 471–477.CrossRefGoogle Scholar
  19. 19.
    Alamo, J. and Roy, R., Ultralow-expansion ceramics in the system Na2O–ZrO2–P2O5–SiO2, J. Am. Ceram. Soc., 1984, vol. 67, no. 5, pp. 78–80.CrossRefGoogle Scholar
  20. 20.
    Ribero, D., Seymour, K.C., Kriven, W.M., and White, M.A., Synthesis of NaTi2(PO4)3 by the inorganic–organic steric entrapment method and its thermal expansion behavior, J. Am. Ceram. Soc., 2016, vol. 99, no. 11, pp. 3586–3593.CrossRefGoogle Scholar
  21. 21.
    Roy, R., Agrawal, D.K., and McKinstry, H.A., Very low thermal expansion coefficient materials, Annu. Rev. Mater. Sci., 1989, vol. 19, pp. 59–81.CrossRefGoogle Scholar
  22. 22.
    Lenain, G.E., McKinstry, H.A., Alamo, J., and Agrawal, D.K., Structural model for thermal expansion in MZr2P3O12 (M = Li, Na, K, Rb, Cs), J. Mater. Sci., 1987, vol. 22, pp. 17–22.CrossRefGoogle Scholar
  23. 23.
    Pet’kov, V.I. and Orlova, A.I., Crystal-chemical approach to predicting the thermal expansion of compounds in the NZP family, Inorg. Mater., 2003, vol. 39, no. 10, pp. 1013–1023.CrossRefGoogle Scholar
  24. 24.
    Roy, S. and Padma Kumar, P., Framework flexibility of sodium zirconium phosphate: role of disorder, and polyhedral distortions from Monte Carlo investigation, J. Mater. Sci., 2012, vol. 47, pp. 4949–4954.Google Scholar
  25. 25.
    Tokita, M., Development of advanced spark plasma sintering (SPS) systems and its industrial applications, Ceram. Trans., 2006, vol. 194, pp. 51–59.Google Scholar
  26. 26.
    Chuvil’deev, V.N., Boldin, M.S., Nokhrin, A.V., and Popov, A.A., Advanced materials obtained by spark plasma sintering, Acta Astr., 2017, vol. 135, pp. 192–197.CrossRefGoogle Scholar
  27. 27.
    Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation materials: a review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, pp. 763–777.CrossRefGoogle Scholar
  28. 28.
    Potanina, E.A., Orlova, A.I., Nokhrin, A.V., et al., Characterization of Nax(Ca/Sr)1 – 2xNdxWO4 complex tungstates fine-grained ceramics obtained by spark plasma sintering, Ceram. Int., 2018, vol. 44, pp. 4033–4044.CrossRefGoogle Scholar
  29. 29.
    Savinykh, D.O., Khainakov, S.A., Orlova, A.I., and Garcia-Granda, S., Preparation and thermal expansion of calcium iron zirconium phosphates with the NaZr2(PO4)3 structure, Inorg. Mater., 2018, vol. 54, no. 6, pp. 591–595.CrossRefGoogle Scholar
  30. 30.
    Orlova, A.I., Troshin, A.N., Mikhailov, D.A., et al., Phosphorus-containing cesium compounds with the pollucite structure: fabrication and radiation testing of high-density ceramics, Radiokhimiya, 2014, vol. 56, no. 1, pp. 87–92.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. O. Savinykh
    • 1
    Email author
  • S. A. Khainakov
    • 2
  • M. S. Boldin
    • 1
  • A. I. Orlova
    • 1
  • A. A. Aleksandrov
    • 1
  • E. A. Lantsev
    • 1
  • N. V. Sakharov
    • 1
  • A. A. Murashov
    • 1
  • S. Garcia-Granda
    • 2
  • A. V. Nokhrin
    • 1
  • V. N. Chuvil’deev
    • 1
  1. 1.Lobachevsky State UniversityNizhny NovgorodRussia
  2. 2.University of OviedoOviedoSpain

Personalised recommendations