Advertisement

Inorganic Materials

, Volume 54, Issue 12, pp 1238–1244 | Cite as

Thermolysis of Nanoparticulate Boehmite Prepared via Aluminum Isopropylate Hydrolysis

  • Yu. V. Posel’skayaEmail author
  • E. A. Belaya
  • D. A. Zherebtsov
  • V. V. Viktorov
  • S. S. Tikhonov
  • Yu. I. Ryabkov
  • I. N. Kovalev
  • D. A. Vinnik
Article
  • 21 Downloads

Abstract

Boehmite gel was prepared via hydrolysis of aluminum isopropylate in a water–alcohol solution. Electron-microscopic examination showed that the boehmite particles were highly uniform in diameter, at ~70 nm. X-ray fluorescence analysis demonstrated high purity of the material. The boehmite was heat-treated in air at 50, 165, 250, 400, 600, 800, 1000, and 1200°C and characterized by X-ray diffraction after each step. The crystallite size of the thermolysis products was found to increase from 1.1 to 3.6 nm in the range 50 to 1000°C. The gel sample dried at 50°C was characterized by simultaneous thermal analysis in combination with mass spectrometry of released gases. According to the thermal analysis results, the total weight loss in the sample was 45%. The mass spectrometry data allowed us to determine the overall formula of the synthesized gel. In the range 100–200°C, the gel lost the residual adsorbed isopropanol and isopropoxide groups, whereas water release continued up to 1000°C. We conclude that the degree of structural order, water content, and purity of the material influence the thermal stability of the metastable phases of aluminum oxide.

Keywords:

alumina aluminum oxyhydroxide phase transformations crystal structure 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Government (Decree no. 211, March 16, 2013; agreement no. 02.A03.21.0011) and the Russian Federation Ministry of Education and Science (state research target no. 4.5749.2017/7.8).

We are grateful to Prof. A.V. Tochev for supplying the gibbsite.

REFERENCES

  1. 1.
    Grinberg, E.E., Levin, Yu.I., Strel’nikova, I.E., and Amelina, A.E., Synthesis and purification of aluminum isopropylate, Russ. J. Appl. Chem., 2014, vol. 87, no. 5, pp. 567–571. doi 10.1134/S107042721405005XCrossRefGoogle Scholar
  2. 2.
    Khishigbayar, K.E., Moon, Y.G., and Bae, E.J., Kim, C.J., and Shim, K.B., Impurity control with the precise measurement of alumina powders synthesized by hydrolysis method, J. Ceram. Process. Res., 2013, vol. 14, no. 2, pp. 168–171.Google Scholar
  3. 3.
    Mirjalili, F., Mohamad, H., and Chuah, L., Preparation of nano-scale α-Al2O3 powder by the sol–gel method, Ceram.–Silik., 2011, vol. 55, no. 4, pp. 378–383.Google Scholar
  4. 4.
    Kim, S.M., Lee, Y.J., Jun, K.W., Park, J.Y., and Potdar, H.S., Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite, Mater. Chem. Phys., 2007, vol. 104, no. 1, pp. 56–61. doi 10.1016/j.matchemphys.2007.02.044CrossRefGoogle Scholar
  5. 5.
    Alphonse, P. and Courty, M., Structure and thermal behavior of nanocrystalline boehmite, Thermochim. Acta, 2005, vol. 425, nos. 1–2, pp. 75–89. doi 10.1016/j.tca.2004.06.009CrossRefGoogle Scholar
  6. 6.
    Toledo-Chavez, G., Paniagua-Rodriguez, J.C., Zarate-Medina, J., and Maya-Yescas, R., Reactions analysis during the synthesis of pseudo-boehmite as precursor of gamma-alumina, Catal. Today, 2016, vol. 271, no. 1, pp. 207–212. doi 10.1016/j.cattod.2015.07.056CrossRefGoogle Scholar
  7. 7.
    Shi, Z., Jiao, W., Chen, L., Wu, P., Wang, Y., and He, M., Clean synthesis of hierarchically structured boehmite and γ-alumina with a flower-like morphology, Microporous Mesoporous Mater., 2016, vol. 224, pp. 253–261. doi 10.1016/j.micromeso.2015.11.064CrossRefGoogle Scholar
  8. 8.
    Hu, B., Jia, E., Du, B., and Yin, Y., A new sol–gel route to prepare dense Al2O3 thin films, Ceram. Int., 2016, vol. 42, no. 15, pp. 16 867–16 871. doi 10.1016/j.ceramint.2016.07.181Google Scholar
  9. 9.
    Song, K.H., Kim, H.Y., Kim, B.M., and Lee, K.R., Boehmite sol-coated membrane preparation for the separation of aqueous alcohol, Desalination, 2008, vol. 234, nos. 1–3, pp. 244–251. doi 10.1016/j.desal.2007.09.091CrossRefGoogle Scholar
  10. 10.
    Levin, I. and Brandon, D., Metastable alumina polymorphs: crystal structures and transition sequences, J. Am. Ceram. Soc., 1998, vol. 81, no. 8, pp. 1995–2012. doi 10.1111/j.1151-2916.1998.tb02581.xCrossRefGoogle Scholar
  11. 11.
    Zherebtsov, D.A., Viktorov, V.V., Kulikovskikh, S.A., Belaya, E.A., and Galimov, D.M., Synthesis of nanoparticulate anatase sol from tetrabutoxytitanium, Inorg. Mater., 2016, vol. 52, no. 1, pp. 33–37. doi 10.1134/S0020168516010167CrossRefGoogle Scholar
  12. 12.
    Gan, B.K., Madsen, I.C., and Hockridge, J.G., In situ X-ray diffraction of the transformation of gibbsite to α-alumina through calcination: effect of particle size and heating rate, J. Appl. Crystallogr., 2009, vol. 42, no. 4, pp. 697–705. doi 10.1107/S0021889809021232CrossRefGoogle Scholar
  13. 13.
    Dash, B., Tripathy, B.C., Bhattacharya, I.N., Das, S.C., Mishra, C.R., and Mishra, B.K., Precipitation of boehmite in sodium aluminate liquor, Hydrometallurgy, 2009, vol. 95, nos. 3–4, pp. 297–301. doi 10.1016/j.hydromet.2008.07.002CrossRefGoogle Scholar
  14. 14.
    Fu, G.F., Wang, J., Xu, B., Gao, H., and Xu, X.L., Influence of hydrothermal temperature on structure and microstructure of boehmite, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, suppl. 1, pp. s221–s225. doi 10.1016/S1003-6326(10)60043-XCrossRefGoogle Scholar
  15. 15.
    Oh, C.J., Yi, Y.K., Tran, T., Kim, M.J., and Kim, S.J., Production of micro-crystalline boehmite from hydrothermal processing of Bayer plant alumina trihydrate, Powder Technol., 2013, vol. 235, pp. 556–562. doi 10.1016/j.powtec.2012.10.041CrossRefGoogle Scholar
  16. 16.
    Karouia, F., Boualleg, M., Digne, M., and Alphonse, P., The impact of nanocrystallite size and shape on phase transformation: application to the boehmite/alumina transformation, Adv. Powder Technol., 2016, vol. 27, no. 4, pp. 1814–1820. doi 10.1016/j.apt.2016.06.014CrossRefGoogle Scholar
  17. 17.
    Xu, B. and Smith, P., Dehydration kinetics of boehmite in the temperature range 723–873 K, Thermochim. Acta, 2012, vol. 531, no. 10, pp. 46–53. doi 10.1016/j.tca.2011.12.025CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Yu. V. Posel’skaya
    • 1
    Email author
  • E. A. Belaya
    • 2
  • D. A. Zherebtsov
    • 3
  • V. V. Viktorov
    • 1
  • S. S. Tikhonov
    • 3
  • Yu. I. Ryabkov
    • 4
  • I. N. Kovalev
    • 2
  • D. A. Vinnik
    • 3
  1. 1.South Ural Humanitarian Pedagogical UniversityChelyabinskRussia
  2. 2.Chelyabinsk State UniversityChelyabinskRussia
  3. 3.South Ural State UniversityChelyabinskRussia
  4. 4.Institute of Chemistry, Komi Scientific Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations