Inorganic Materials

, Volume 54, Issue 12, pp 1223–1230 | Cite as

Synthesis and Physicochemical and Electrorheological Properties of Modified Nanodisperse Titanium Dioxide

  • A. N. MurashkevichEmail author
  • K. M. Chechura
  • M. S. Novitskaya
  • O. A. Alisienok
  • E. V. Korobko
  • Z. A. Novikova


Nanodisperse modified titanium dioxide ranging in specific surface from 70 to 130 m2/g has been prepared by a sol–gel process using Al(NO3)3 and H3PO4 as modifying components and dodecylamine and ammonium carbonate as structuring components. Microwave drying of an intermediate product and pulverization in a planetary mill have been shown for the first time to be effective in reducing the bulk density of the material and improving its electrorheological activity. The effect of filler concentration (10–40 wt %) on the shear load and leakage current density of electrorheological dispersions has been examined.


titanium dioxide microwave drying dispersion leakage current density shear stress filler electrorheology 



  1. 1.
    Zhao, X.P., Yin, J.B., Xiang, L.Q., and Zhao, Q., Electrorheological fluids containing Ce-doped titania, J. Mater. Sci., 2002, vol. 37, pp. 2569–2573.CrossRefGoogle Scholar
  2. 2.
    Tang, H., He, J., and Persello, J., Giant electrorheological effects of aluminium-doped TiO2 nanoparticles, Particuology, 2010, vol. 8, pp. 442–446.CrossRefGoogle Scholar
  3. 3.
    Shang, Y.L., Jia, Y.L., Liao, F.H., Li, J.R., Li, M.H., Wang, J., and Zhang, S.H., Preparation, microstructure and electrorheological property of nano-sized TiO2 particle materials doped with metal oxides, J. Mater. Sci., 2007, vol. 42, pp. 2586–2590.CrossRefGoogle Scholar
  4. 4.
    Wu, Q., Zhao, B.Y., Fang, C., and Hu, K.A., An enhanced polarization mechanism for the metal cations modified amorphous TiO2 based electrorheological materials, Eur. Phys. J. E, 2005, vol. 17, pp. 63–67.CrossRefGoogle Scholar
  5. 5.
    Yin, J.B. and Zhao, X.P., Enhanced electrorheological activity of mesoporous Cr-doped TiO2 from activated pore wall and high surface area, J. Phys. Chem. B, 2006, vol. 110, pp. 12 916–12 925.Google Scholar
  6. 6.
    Yin, J. and Zhao, X., Temperature effect of rare earth-doped TiO2 electrorheological fluids, J. Phys. D: Appl. Phys., 2001, no. 34, pp. 2063–2067.Google Scholar
  7. 7.
    Zhao, X.P. and Yin, J.B., Preparation and electrorheological characteristics of rare-earth-doped TiO2 suspensions, Chem. Mater., 2002, no. 14, pp. 2258–2263.Google Scholar
  8. 8.
    Ma, Sh., Liao, F., Li, Sh., Xu, M., Li, J., Zhang, Sh., Chen, Sh., Huang, R., and Gao, S., Effect of microstructure, grain size, and rare earth doping on the electrorheological performance of nanosized particle materials, J. Mater. Chem., 2003, vol. 13, pp. 3096–3102.CrossRefGoogle Scholar
  9. 9.
    Yin, J. and Zhao, X., Electrorheology of nanofiber suspensions, Nanoscale Res. Lett., 2011, no. 6, pp. 256–273.Google Scholar
  10. 10.
    Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., and Korobko, E.V., Modified titania and titanium-containing composites as fillers exhibiting an electrorheological effect, Inorg. Mater., 2013, vol. 49, no. 2, pp. 165–171.CrossRefGoogle Scholar
  11. 11.
    Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., Korobko, E.V., Zhuravskii, N.A., and Novikova, Z.A., Physicochemical and electrorheological properties of titanium dioxide modified with metal oxides, Colloid J., 2014, vol. 76, no. 4, pp. 465–470.CrossRefGoogle Scholar
  12. 12.
    Wang, B. and Zhao, X., Core/shell nanocomposite based on the local polarization and its electrorheological behavior, Langmuir, 2005, vol. 21, pp. 6553–6559.CrossRefGoogle Scholar
  13. 13.
    Kim, M.W., Moon, I.J., Choi, H.J., and Seo, Y., Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology, RSC Adv., 2016, vol. 6, no. 61, pp. 56 495–56 502.Google Scholar
  14. 14.
    Kim, S., Kim, Ch., Hong, J.-Y., Hwang, S.H., and Jang, J., Enhanced electrorheological performance of barium-doped SiO2/TiO2 hollow mesoporous nanospheres, RSC Adv., 2014, vol. 4, pp. 6821–6824.CrossRefGoogle Scholar
  15. 15.
    Jiang, Y., Li, X., Wang, Sh., and Xiao, Y., Preparation of titanium dioxide nano-particles modified with poly(methyl methacrylate) and its electrorheological characteristics in Isopolar L, Colloid Polym. Sci., 2015, vol. 293, no. 2, pp. 473–479.CrossRefGoogle Scholar
  16. 16.
    Xiang, L., Zhao, X., and Yin, J., Micro/nano-structured montmorillonite/titania particles with high electrorheological activity, Rheol. Acta, 2011, vol. 50, pp. 87–95.CrossRefGoogle Scholar
  17. 17.
    Liu, F., Xu, G., Wu, J., Cheng, Y., Guo, J., and Cui, P., Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles, Colloid Polym. Sci., 2010, vol. 288, pp. 1739–1744.CrossRefGoogle Scholar
  18. 18.
    Li, Zh., Liu, F., Xu, G., Zhang, J., and Chu, Ch., A kinetics-controlled coating method to construct 1D attapulgite amorphous titanium oxide nanocomposite with high electrorheological activity, Colloid Polym. Sci., 2014, vol. 292, pp. 3327–3335.CrossRefGoogle Scholar
  19. 19.
    Wang, J., Chen, G., Yin, J., Luo, Ch., and Zhao, X., Enhanced electrorheological performance and antisedimentation property of mesoporous anatase TiO2 shell prepared by hydrothermal process, Smart Mater. Struct., 2017, vol. 26, no. 3, pp. 1–8.Google Scholar
  20. 20.
    Wang, Zh., Song, X., Wang, B., Tian, X., Hao, Ch., and Chen, K., Bionic cactus-like titanium oxide microspheres and its smart electrorheological activity, Chem. Eng. J., 2014, vol. 256, pp. 268–279.CrossRefGoogle Scholar
  21. 21.
    Zhao, B., Lin, L., and He, D., Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment, J. Mater. Chem. A, 2013, vol. 1, pp. 1659–1668.CrossRefGoogle Scholar
  22. 22.
    Gerasimova, T.V., Evdokimova (Galkina), O.L., Kraev, A.S., Ivanov, V.K., and Agafonov, A.V., Micro-mesoporous anatase TiO2 nanorods with high specific surface area possessing enhanced adsorption ability and photocatalytic activity, Microporous Mesoporous Mater., 2016, vol. 235, pp. 185–194.CrossRefGoogle Scholar
  23. 23.
    Zhang, M., Jin, Zh., Zhang, J., Guo, X., Yang, J., and Li, W., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2, J. Mol. Catal. A: Chem., 2004, vol. 217, pp. 203–210.CrossRefGoogle Scholar
  24. 24.
    Qi, Y.B. and Wen, W.J., Influences of geometry of particles on electrorheological fluids, J. Phys. D: Appl. Phys., 2002, vol. 35, pp. 2231–2245.CrossRefGoogle Scholar
  25. 25.
    Tan, S., Song, X., Zhao, H., Ji, S., Min, W., Guo, H., and Chunjiang, Zh., Rheology properties of Ni/TiO2/SDBS EMR fluids, Adv. Mater. Res., 2013, vols. 706–708, pp. 254–257.CrossRefGoogle Scholar
  26. 26.
    Sedlacik, M., Mrlik, M., Kozakova, Z., Pavlinek, V., and Kuritka, I., Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method, Colloid Polym. Sci., 2013, vol. 291, pp. 1105–1111.CrossRefGoogle Scholar
  27. 27.
    Yin, J., Zhao, X., Xiang, L., Xia, X., and Zhang, Z.H., Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles, Soft Matter, 2009, vol. 5, pp. 4687–4697.CrossRefGoogle Scholar
  28. 28.
    Otsubo, Y., Electrorheology of whisker suspensions, Colloids Surf., A, 1999, no. 153, pp. 459–465.Google Scholar
  29. 29.
    Agafonov, A.V., Davydova, O.I., Krayev, A.S., Ivanova, O.S., Evdokimova, O.L., Gerasimova, T.V., Baranchikov, A.E., Kozik, V.V., and Ivanov, V.K., Unexpected effects of activator molecules' polarity on the electrorheological activity of titanium dioxide nanopowders, J. Phys. Chem. B, 2017, vol. 121, pp. 6732–6738.CrossRefGoogle Scholar
  30. 30.
    Agafonov, A.V., Krayev, A.S., Davydova, O.I., Ivanov, K.V., Shekunova, T.O., Baranchikov, A.E., Ivanova, O.S., Borilo, L.P., Garshev, A.V., Kozik, V.V., and Ivanov, V.K., Nanocrystalline ceria: a novel material for electrorheological fluids, RSC Adv., 2016, vol. 6, pp. 88 851–88 858.Google Scholar
  31. 31.
    Agafonov, A.V., Kraev, A.S., Gerasimova, T.V., et al., Properties of electrorheological fluids based on nanocrystalline cerium dioxide, Russ. J. Inorg. Chem., 2017, vol. 62, no. 5, pp. 625–632.CrossRefGoogle Scholar
  32. 32.
    Murashkevich, A.N., Zharskii, I.M., Alisienok, O.A., Babeiko, K.M., Korobko, E.V., and Bedik, N.A., Structural and electrophysical properties of nanodispersed titanium dioxide as a filler of electrorheological dispersions, Materialy V mezhdunarodnoi nauchnoi konferentsii “Nanostrukturnye materialy” (Proc. V Int. Sci. Conf. Nanostructured Materials), Minsk, 2016, vol. 1, pp. 114–117.Google Scholar
  33. 33.
    GOST (State Standard) 18307-78: Carbon White, Purity Standard, 1978.Google Scholar
  34. 34.
    Wang, J., Zhao, K., and Zhang, L., Dielectric analysis of TiO2-based electrorheological suspensions, Rheol. Acta., 2013, vol. 52, pp. 115–125.CrossRefGoogle Scholar
  35. 35.
    Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., Korobko, E.V., and Novikova, Z.A., The effect of the synthesis conditions of aluminum-modified nanosized titanium dioxide on the efficiency of its use in electrorheological dispersions, Colloid J., 2017, vol. 79, no. 1, pp. 87–93.CrossRefGoogle Scholar
  36. 36.
    Tarasov, A.B., Synthesis, structure, and functional properties of nanostructured titanium dioxide obtained by heterogeneous hydrolysis of titanium tetrachloride in aerosol systems, Cand. Sci. (Eng.) Dissertation, Chernogolovka, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. N. Murashkevich
    • 1
    Email author
  • K. M. Chechura
    • 1
  • M. S. Novitskaya
    • 1
  • O. A. Alisienok
    • 1
  • E. V. Korobko
    • 2
  • Z. A. Novikova
    • 2
  1. 1.Belarussian State Technological UniversityMinskBelarus
  2. 2.Lykov Institute of Heat and Mass Exchange, Belarussian Academy of SciencesMinskBelarus

Personalised recommendations