Advertisement

Inorganic Materials

, Volume 54, Issue 12, pp 1277–1290 | Cite as

Lead Zirconate Titanate/Modified Nickel Ferrite Magnetoelectric Composites Prepared from Submicron Precursors

  • I. V. LisnevskayaEmail author
Article
  • 16 Downloads

Abstract

We have studied the effects of the preparation procedure, connectivity pattern, and weight ratio of components on the phase composition and properties of particulate PZT–Ni0.9Co0.1Cu0.1Fe1.9O4 – δ magnetoelectric (ME) composites (where PZT stands for piezoelectric materials based on lead zirconate titanate of various industrial grades). The ME ceramics contain no foreign phases, but the use of fine piezoelectric powders leads to one-way doping of the piezoelectric with components of the ferrite. If macrocrystalline PZT is used, undesirable doping processes occur only on interfaces. The 0–3 connectivity composites with equal weight percentages of phases based on soft piezoelectric materials have improved piezoelectric parameters and high ME coupling efficiency (ΔEH = 110–140 mV/(cm Oe)), which exceeds that of the composites with the other connectivity patterns by at least a factor of 1.5. The use of hard piezoelectrics instead of the soft ones reduces ΔEH coefficients by a factor of 3 or more.

Keywords:

magnetoelectrics multiferroics composites core–shell structures 

REFERENCES

  1. 1.
    Run, A.M.J.G., Terrell, D.R., and Scholing, J.H., An in situ grown eutectic composite material. Part 1, J. Mater. Sci., 1974, vol. 9, no. 10, pp. 1705–1709.CrossRefGoogle Scholar
  2. 2.
    Boomgaard, J., Terrel, D.R., Born, R.A.J.H., and Giller, F.J.I., An in situ grown eutectic magnetoelectric composite material. Part 2, J. Mater. Sci., 1974, vol. 9, no. 10, pp. 1710–1714.CrossRefGoogle Scholar
  3. 3.
    Boomgaard, J., Run, A.M.J.G., and Suchtelen, J., Piezoelectric–piezomagnetic composites with magnetoelectric effect, Ferroelectrics, 1976, vol. 14, nos. 1/4, pp. 727–728.CrossRefGoogle Scholar
  4. 4.
    Boomgaard, J., Run, A.M.J.G., and Suhtelen, J., Magnetoelectricity in piezoelectric magnetostrictive composites, Ferroelectrics, 1976, vol. 10, nos. 1/4, pp. 295–298.CrossRefGoogle Scholar
  5. 5.
    Bichurin, M.I., Petrov, V.M., Kornev, I.A., Ignat’eva, E.Yu., Lisnevskaya, I.V., and Fomin, O.G., Magnetoelectric properties of composite materials, Vestn. Novgorod. Gos. Univ., Ser. Estestv. Tekh. Nauki, 1996, no. 3, pp. 3–7.Google Scholar
  6. 6.
    Bichurin, M.I., Kornev, I.A., Petrov, V.M., and Lisnevskaya, I.V., Investigation of magnetoelectric interaction in composite, Ferroelectrics, 1997, vol. 204, no. 1, pp. 289–297. doi 10.1080/00150199708222209CrossRefGoogle Scholar
  7. 7.
    Bichurin, M.I., Petrov, V.M., and Filippov, D.A., Magnetoelektricheskie materialy (Magnetoelectric Materials), Moscow: Akademiya Estestvoznaniya, 2006. http://www.rae.ru/ru/publishing/mono03.html.Google Scholar
  8. 8.
    Lopatin, S., Lopatina, I., and Lisnevskaya, I., Magnetoelectric PZT/ferrite composite materials, Ferroelectrics, 1994, vol. 162, nos. 1/4, pp. 115–118. doi 10.1080/00150199408245091CrossRefGoogle Scholar
  9. 9.
    Lupeiko, T.G., Lopatin, S.S., Lisnevskaya, I.V., and Zvyagintsev, B.I., Magnetoelectric composite materials based on lead zirconate titanate and nickel ferrite, Inorg. Mater., 1994, vol. 30, no. 11, pp. 1353–1356.Google Scholar
  10. 10.
    Lupeiko, T.G., Lisnevskaya, I.V., Chkheidze, M.D., and Zvyagintsev, B.I., Laminated magnetoelectric composites based on nickel ferrite and PZT materials, Inorg. Mater., 1995, vol. 31, no. 9, pp. 1139–1142.Google Scholar
  11. 11.
    Ostashchenko, A.Yu., Kamentsev, K.E., Fetisov, Yu.K., and Srinivasan, G., Magnetoelectric response of a multilayer ferrite–piezoelectric structure to magnetic field pulses, Tech. Phys. Lett., 2004, vol. 30, no. 18, pp. 769–771.CrossRefGoogle Scholar
  12. 12.
    Srinivasan, G., Rasmussen, E.T., Bush, A.A., Kamentsev, K.E., Meshcheryakov, V.F., and Fetisov, Y.K., Piezoelectric single crystal langatate and ferromagnetic composites: studies on low-frequency and resonance magnetoelectric effects, Appl. Phys. A Mater. Sci. Process., 2004, vol. 78, no. 5, pp. 721–728. doi 10.1063/1.3679661CrossRefGoogle Scholar
  13. 13.
    Belov, K.P., Magnitostriktsionnye yavleniya i ikh tekhnicheskie prilozheniya (Magnetostrictive Effects and Their Engineering Applications), Moscow: Nauka, 1987.Google Scholar
  14. 14.
    Duong, G.V., Groessinger, R., and Sato-Turtelli, R., Driving mechanism for magnetoelectric effect in CoFe2O4–BaTiO3 multiferroic composite, J. Magn. Magn. Mater., 2007, vol. 310, no. 2, pp. 1157–1159. doi 10.1016/j.jmmm.2006.10.333CrossRefGoogle Scholar
  15. 15.
    Duong, G.V. and Groessinger, R., Effect of preparation conditions on magnetoelectric properties of CoFe2O4–BaTiO3 magnetoelectric composites, J. Magn. Magn. Mater., 2007, vol. 316, no. 2, pp. e624–e627. doi 10.1016/j.jmmm.2007.03.142CrossRefGoogle Scholar
  16. 16.
    Duong, G.V., Groessinger, R., and Sato-Turtelli, R., Effect of structure on magnetoelectric properties of CoFe2O4–BaTiO3 multiferroic composites, J. Magn. Magn. Mater., 2007, vol. 310, no. 2, pp. e361–e363. doi 10.1016/j.jmmm.2006.10.338CrossRefGoogle Scholar
  17. 17.
    Kumar, A.S., Lekha, C.S.C., Vivek, S., Saravanan, V., Nandakumar, K., and Nair, S.S., Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite, J. Magn. Magn. Mater., 2016, vol. 418, no. 11, pp. 294–299. doi 10.1016/j.jmmm.2016.02.065CrossRefGoogle Scholar
  18. 18.
    Kambale, R.C., Song, K.M., and Hur, N., Dielectric and magnetoelectric properties of BaTiO3–CoMn0.2Fe1.8O4 particulate (0–3) multiferroic composites, Curr. Appl. Phys., 2013, vol. 13, no. 3, pp. 562–566. doi 10.1016/j.cap.2012.10.007CrossRefGoogle Scholar
  19. 19.
    Mondal, R.A., Murty, B.S., and Murthy, V.R.K., Dielectric, magnetic and enhanced magnetoelectric response in high energy ball milling assisted BST–NZF particulate composite, Mater. Chem. Phys., 2015, vol. 167, no. 11, pp. 338–346. doi 10.1016/j.matchemphys.2015.10.053CrossRefGoogle Scholar
  20. 20.
    Mitoseriu, L., Pallecchi, I., Buscaglia, V., Testino, A., Ciomaga, C.E., and Stancu, A., Magnetic properties of the BaTiO3–(Ni,Zn)Fe2O4 multiferroic composites, J. Magn. Magn. Mater., 2007, vol. 316, no. 2, pp. e603–e606. doi 10.1016/j.jmmm.2007.03.036CrossRefGoogle Scholar
  21. 21.
    Sadhana, K., Praveena, K., Bharadwaj, S., and Murthy, S.R., Microwave-hydrothermal synthesis of BaTiO3 + NiCuZnFe2O4 nanocomposites, J. Alloys Compd., 2009, vol. 472, nos. 1–2, pp. 484–488. doi 10.1016/j.jallcom.2008.04.104CrossRefGoogle Scholar
  22. 22.
    Zhang, H. and Du, P., Ferroelectricity and ferromagnetism in fine-grained multiferroic BaTiO3/ (Ni0.5Zn0.5)Fe2O4 composites prepared by a novel hybrid process, Solid State Commun., 2009, vol. 149, nos. 3–4, pp. 101–106. doi 10.1016/j.ssc.2008.11.015CrossRefGoogle Scholar
  23. 23.
    Upadhyay, S.K., Reddy, V.R., and Lakshmi, N., Study of (1 − x)BaTiO3 – xxNi0.5Zn0.5Fe2O4 (x = 5, 10 and 15%) magneto-electric ceramic composites, J. Asian Ceram. Soc., 2013, vol. 1, no. 4, pp. 346–350. doi 10.1016/j.jascer.2013.10.001CrossRefGoogle Scholar
  24. 24.
    Harnagea, C., Mitoseriu, L., Buscaglia, V., Pallecchi, I., and Nanni, P., Magnetic and ferroelectric domain structures in BaTiO3–(Ni0.5Zn0.5)Fe2O4 multiferroic ceramics, J. Eur. Ceram. Soc., 2007, vol. 27, nos. 13–15, pp. 3947–3950. doi 10.1016/j.jeurceramsoc.2007.02.072CrossRefGoogle Scholar
  25. 25.
    Iordan, A.R., Airimioaiei, M., Palamaru, M.N., Galassi, C., Sandu, A.V., Ciomaga, C.E., Prihor, F., Mitoseriu, L., and Ianculescu, A., In situ preparation of CoFe2O4–Pb(ZrTi)O3 multiferroic composites by gel-combustion technique, J. Eur. Ceram. Soc., 2009, vol. 29, no. 13, pp. 2807–2813. doi 10.1016/j.jeurceramsoc.2009.03.031CrossRefGoogle Scholar
  26. 26.
    Lisnevskaya, I.V., Bobrova, I.A., and Lupeiko, T.G., Comparison of the properties of PZTNB-1 + Ni0.9Co0.1Cu0.1Fe1.9O4−δ magnetoelectric composites manufactured from components synthesized by sol–gel processes, Russ. J. Inorg. Chem., 2012, vol. 57, no. 1, pp. 84–89. doi 10.1134/S0036023611090142CrossRefGoogle Scholar
  27. 27.
    Zhuravlev, G.I., Khimiya i tekhnologiya ferritov (Chemistry and Technology of ferrites), Leningrad: Khimiya, 1970.Google Scholar
  28. 28.
    Levin, B.E., Tret’yakov, Yu.D., and Letyuk, L.M., Fiziko-khimicheskie osnovy polucheniya, svoistva i primenenie ferritov (Physicochemical principles of preparation, properties, and applications of ferrites), Moscow: Metallurgiya, 1979.Google Scholar
  29. 29.
    Lisnevskaya, I.V., Bobrova, I.A., and Lupeiko, T.G., Synthesis of magnetic and multiferroic materials from polyvinyl alcohol based gels, J. Magn. Magn. Mater., 2016, vol. 397, no. 1, pp. 86–95. doi 10.1016/j.jmmm.2015.08.084CrossRefGoogle Scholar
  30. 30.
    Lisnevskaya, I.V., Bobrova, I.A., Petrova, A.V., and Lupeiko, T.G., Low-temperature sol–gel synthesis of modified nickel ferrite, Russ. J. Inorg. Chem., 2012, vol. 57, no. 4, pp. 474–477. doi 10.1134/S0036023612040171CrossRefGoogle Scholar
  31. 31.
    Yu, M., Hu, J., Liu, J., and Li, S., Electromagnetic properties of multiferroic magnetoelectric BaTiO3–CoxFe3 − xO4 core–shell particles obtained by homogeneous coprecipitation, J. Magn. Magn. Mater., 2013, vol. 326, no. 1, pp. 31–34. doi 10.1016/j.jmmm.2012.08.033CrossRefGoogle Scholar
  32. 32.
    Selvi, M.M., Manimuthu, P., Kumar, K.S., and Venkateswaran, C., Magnetodielectric properties of CoFe2O4–BaTiO3 core–shell nanocomposite, J. Magn. Magn. Mater., 2014, vol. 369, no. 11, pp. 155–161. doi 10.1016/j.jmmm.2014.06.039CrossRefGoogle Scholar
  33. 33.
    Bracke, L.P.M. and Vliet, R.G., A broadband magneto-electric transducer using a composite material, Int. J. Electron., 1981, vol. 51, no. 3, pp. 255–262.CrossRefGoogle Scholar
  34. 34.
    Fesenko, E.G., Dantsiger, O.N., and Razumovskaya, A.Ya., Novye keramicheskie materialy (Novel Ceramic Materials), Rostov-on-Don: Rostov. Gos. Univ., 1983.Google Scholar
  35. 35.
    Panich, A.E. and Kupriyanov, M.F., Fizika i tekhnologiya segnetokeramiki, (Physics and Technology of Ferroelectric Ceramics), Rostov-on-Don: Rostov. Gos. Univ., 1989.Google Scholar
  36. 36.
    Venevtsev, Yu.N., Politov, E.D., and Ivanov, S.A., Segneto- i antisegnetoelektriki semeistva titanata bariya (Ferro- and Antiferroelectrics of the Barium Titanate Family), Moscow: Khimiya, 1985.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations