Inorganic Materials

, Volume 54, Issue 12, pp 1308–1314 | Cite as

Evolution of the Structure and Properties of AK10M2N Silumin under Irradiation with a High-Intensity Pulsed Electron Beam

  • V. E. Gromov
  • I. F. Ivanov
  • D. V. ZagulyaevEmail author
  • E. A. Petrikova
  • S. V. Konovalov
  • A. D. Teresov
  • M. E. Rygina


The structure of cast AK10M2N silumin has been studied by scanning electron microscopy. The results demonstrate that the silumin is a multiphase material containing silicon and intermetallic inclusions. Irradiation of silumin with a high-intensity electron beam has been shown to be accompanied by melting of the surface layer, dissolution of the silicon and intermetallic inclusions, formation of a cellular crystallization structure, and secondary precipitation of submicron- and nanometer-sized second-phase particles. Dispersion of the structure of the surface layer is accompanied by an improvement of the mechanical properties of the silumin.


silumin electron beam electron microscopy wear resistance structure microhardness surface 



This work was supported in part by the Siberian Branch of the Russian Academy of Sciences (basic research project no. 0366-2016-0009) and the Russian Federation Ministry of Education and Science (state research target no. 3.1283.2017/4.6).


  1. 1.
    Pandee, P., Gourlay, C.M., Belyakov, S.A., Patakham, U., Zeng, G., and Limmaneevichitr, C., AlSi2Sc2 intermetallic formation in Al–7Si–0.3Mg–xSc alloys and their effects on as-cast properties, J. Alloys Compd., 2018, vol. 731, pp. 1159–1170.CrossRefGoogle Scholar
  2. 2.
    Yuan Xing, Zhihong Jia, Jiehua Li, Lipeng Ding, Huilan Huang, and Qing Liu, Microstructure and mechanical properties of foundry Al–Si–Cu–Hf alloy, Mater. Sci. Eng., A., 2018, vol. 722, pp. 197–205.CrossRefGoogle Scholar
  3. 3.
    Belov, N.A., Eskin, D.G., and Aksenov, A.A., Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Amsterdam: Elsevier, 2005.Google Scholar
  4. 4.
    Tengfei Gu, Ye Pan, Tao Lu, Chenlin Li, and Jinghong Pi, Effects of boron addition on the morphology of silicon phases in Al–Si casting alloys, Mater. Character., 2018, vol. 141, pp. 115–119.CrossRefGoogle Scholar
  5. 5.
    Makhloufe, M.M. and Guthy H.V., The aluminum–silicon eutectic reaction: mechanisms and crystallography, J. Light Met., 2001, vol. 1, no. 4, pp. 199–218.CrossRefGoogle Scholar
  6. 6.
    Páramo, V., Colás, R., Velasco, E., and Valtierra, S., Spheroidization of the Al–Si eutectic in a cast aluminum alloy, J. Mater. Eng. Perform., 2000, vol. 9, no. 6, pp. 616–622.CrossRefGoogle Scholar
  7. 7.
    Shaobo Sun, Lijing Zheng, Hui Peng, and Hu Zhang, Microstructure and mechanical properties of Al–Fe–V–Si aluminum alloy produced by electron beam melting, Mater. Sci. Eng., A, 2016, vol. 659, pp. 207–214.CrossRefGoogle Scholar
  8. 8.
    Xiaorui Liu, Benoît Beausir, Yudong Zhang, Weimin Gan, Hui Yuan, Fuxiao Yu, Claude Esling, Xiang Zhao, and Liang Zuo, Heat-treatment induced defect formation in α-Al matrix in Sr-modified eutectic Al–Si alloy, J. Alloys Compd., 2018, vol. 730, pp. 208–218.CrossRefGoogle Scholar
  9. 9.
    Ueyama, D., Saitoh, Y., Ishikawa, N., Ohmura, T., Semboshi, S., Hori, F., and Iwase, A., Hardness modification of Al–Mg–Si alloy by using energetic ion beam irradiation, Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 351, pp. 1–5.Google Scholar
  10. 10.
    Borowski, J. and Bartkowiak, K., Investigation of the influence of laser treatment parameters on the properties of the surface layer of aluminum alloys, Phys. Proc., 2010, vol. 5, pp. 449–456.CrossRefGoogle Scholar
  11. 11.
    Ivanov, Yu.F., Petrikova, E.A., Teresov, A.D., Tkachenko, A.V., Bibik, N.V., and Cherenda, N.N., Application of high-intensity electron beams for modifying the structure and properties of silumin, Izv. Vyssh. Uchebn. Zaved., Fiz., 2014, vol. 57, no. 3-3, pp. 144–147.Google Scholar
  12. 12.
    Ivanov, Yu.F., Aksenova, K.V., Gromov, V.E., Konovalov, S.V., and Petrikova, E.A., An increase in fatigue service life of eutectic silumin by electron-beam treatment, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 3, pp. 236–242.CrossRefGoogle Scholar
  13. 13.
    Gromov, V.E., Ivanov, Yu.F., Alsaraeva, K.V., Konovalov, S.V., Kalashnikov, M.P., and Petrikova, E.A., Structural and phase changes accompanying fatigue of silumin after electron-beam pretreatment, Aviats. Prom–st., 2015, no. 3, pp. 35–40.Google Scholar
  14. 14.
    Abbas, M.Kh. and Mahmoud, A.K., Laser surface treatment of Al–12% Si alloy, Mater. Today: Proc., 2017, vol. 4, no. 9, pp. 9992–9996.CrossRefGoogle Scholar
  15. 15.
    Liang Hu, Bo Gao, Guanglin Zhu, Yi Hao, Shuchen Sun, and Ganfeng Tu, The effect of neodymium on the microcracks generated on the Al–17.5Si alloy surface treated by high current pulsed electron beam, Appl. Surf. Sci., 2016, vol. 364, pp. 490–497.CrossRefGoogle Scholar
  16. 16.
    Gouthama, M.S., Surface modification of Al–Si alloy by excimer laser pulse processing, Mater. Chem. Phys., 2016, vol. 173, pp. 192–199.CrossRefGoogle Scholar
  17. 17.
    Hao, Y., Gao, B., Tu, G.F., Cao, H., Hao, S.Z., and Dong, C., Surface modification of Al–12.6Si alloy by high current pulsed electron beam, Appl. Surf. Sci., 2012, vol. 258, no. 6, pp. 2052–2056.CrossRefGoogle Scholar
  18. 18.
    Hao, Y., Gao, B., Tu, G.F., Li, S.W., Dong, C., and Zhang, Z.G., Improved wear resistance of Al–15Si alloy with a high current pulsed electron beam treatment, Nucl. Instrum. Methods Phys. Res., Sect. B, 2011, vol. 269, no. 13, pp. 1499–1505.Google Scholar
  19. 19.
    Bo Gao, Liang Hu, Shi-wei Li, Yi Hao, Yu-dong Zhang, Gan-feng Tu, and Grosdidier, Th., Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam, Appl. Surf. Sci., 2015, vol. 346, pp. 147–157.CrossRefGoogle Scholar
  20. 20.
    Rotshtein, V., Ivanov, Yu., and Markov, A., Surface treatment of materials with low-energy, high-current electron beams, Materials Surface Processing by Directed Energy Techniques, Pauleau, Y., Ed., Amsterdam: Elsevier, 2006, chapter 6, pp. 205–240.Google Scholar
  21. 21.
    Qing Liu, Maowen Liu, Cong Xu, Wenlong Xiao, Hiroshi Yamagata, Shenghui Xie, and Chaoli Ma, Effects of Sr, Ce and P on the microstructure and mechanical properties of rapidly solidified Al7Si alloys, Mater. Character., 2018, vol. 140, pp. 290–298.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. E. Gromov
    • 1
  • I. F. Ivanov
    • 2
  • D. V. Zagulyaev
    • 1
    Email author
  • E. A. Petrikova
    • 2
  • S. V. Konovalov
    • 3
  • A. D. Teresov
    • 2
  • M. E. Rygina
    • 2
  1. 1.Siberian State Industrial UniversityNovokuznetskRussia
  2. 2.Institute of High-Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia
  3. 3.Korolev National Research UniversitySamaraRussia

Personalised recommendations