Inorganic Materials

, Volume 54, Issue 12, pp 1291–1298 | Cite as

Preparation of Fine-Grained Y2.5Nd0.5Al5O12 + MgO composite ceramics for Inert Matrix Fuels by Spark Plasma Sintering

  • L. S. GolovkinaEmail author
  • A. V. Nokhrin
  • M. S. Boldin
  • E. A. Lantsev
  • A. I. Orlova
  • V. N. Chuvil’deev
  • A. A. Murashov
  • N. V. Sakharov


We have studied the feasibility of preparing high-density (98.6–99.5%) Y2.5Nd0.5Al5O12 (YAG)–xMgO (x = 5, 10, 20 vol %) composite ceramics by spark plasma sintering. YAG–MgO powder materials have been prepared via MgO precipitation from an aqueous solution of magnesium nitrate, Mg(NO3)2, on the surface of garnet particles. The sintering rate of the YAG–MgO composites has been shown to be controlled by volume diffusion at low temperatures and by grain-boundary diffusion at elevated temperatures.


ceramics garnet spark plasma sintering microstructure diffusion 



This work was supported by the Russian Science Foundation, grant no. 16-13-10464.


  1. 1.
    Cocuaud, N. et al., Inert matrices, uranium-free plutonium fuels and americium targets. Synthesis of CAPRA, SPIN and EFTTRA studies, Proc. Conf. GLOBAL'97, Yokohama, 1997, pp. 1044–1049.Google Scholar
  2. 2.
    Chauvin, N., Konings, R.J., and Matzke, H., Optimization of inert matrix fuel concepts for americium transmutation, J. Nucl. Mater., 1999, vol. 274, nos. 1–2, pp. 105–111.CrossRefGoogle Scholar
  3. 3.
    Neeft, E.A.C., Bakker, K., Schram, R.P.C., et al., The EFTTRA-T3 irradiation experiment on inert matrix fuels, J. Nucl. Mater., 2003, vol. 320, nos. 1–2, pp. 106–116.CrossRefGoogle Scholar
  4. 4.
    Golovkina, L.S., Orlova, A.I., Boldin, M.S., et al., Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxide, J. Nucl. Mater., 2017, vol. 489, pp. 158–163.CrossRefGoogle Scholar
  5. 5.
    Potanina, E., Golovkina, L., Orlova, A., et al., Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by spark plasma sintering, J. Nucl. Mater., 2016, vol. 473, pp. 93–98.CrossRefGoogle Scholar
  6. 6.
    Golovkina, L.S., Orlova, A.I., Nokhrin, A.V., et al., Ceramics based on yttrium aluminum garnet containing Nd and Sm obtained by spark plasma sintering, Adv. Ceram. Sci. Eng., 2013, vol. 2, no. 4, pp. 161–165.Google Scholar
  7. 7.
    Tomilin, S.V., Lizin, A.A., Lukinykh, A.N., et al., Radiation resistance and chemical stability of yttrium aluminum garnet, Radiokhimiya, 2011, vol. 53, no. 2, pp. 162–165.Google Scholar
  8. 8.
    Livshits, T.S., Lizin, A.A., Zhang, J.M., and Ewing, R.C., Amorphization of rare earth aluminate garnets under ion irradiation and decay of 244Cm admixture, Geol. Ore Deposits, 2010, vol. 52, no. 4, pp. 267–278.CrossRefGoogle Scholar
  9. 9.
    Gregg, D.J., Karatchevtseva, I., Triani, G., et al., The thermophysical properties of calcium and barium zirconium phosphate, J. Nucl. Mater., 2013, vol. 441, pp. 203–210.CrossRefGoogle Scholar
  10. 10.
    Ryu, H.J., Lee, Y.W., Cha, S.I., et al., Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering, J. Nucl. Mater., 2006, vol. 352, pp. 341–348.CrossRefGoogle Scholar
  11. 11.
    Kamel, N., Aϊt-Amar, H., Kamel, Z., et al., On the basic properties of an iron-based simulated cermet inert matrix fuel, synthesized by a dry route in oxidizing conditions, Prog. Nucl. Eng., 2006, vol. 48, pp. 590–598.CrossRefGoogle Scholar
  12. 12.
    Wang, B., Jiang, H., Jia, X., et al., Thermal conductivity of doped YAG and GGG laser crystal, Front. Optoelectron. China, 2008, vol. 1, nos. 1–2, pp. 138–141.CrossRefGoogle Scholar
  13. 13.
    Chuvil’deev, V.N., Boldin, M.S., Dyatlova, Ya.G., et al., A comparative study of the hot pressing and spark plasma sintering of Al2O3–ZrO2–Ti(C,N) powders, Inorg. Mater., 2015, vol. 51, no. 10, pp. 1047–1053.CrossRefGoogle Scholar
  14. 14.
    Chuvil’deev, V.N., Boldin, M.S., Nokhrin, A.V., and Popov, A.A., Advanced materials obtained by spark plasma sintering, Acta Astronaut., 2017, vol. 135, pp. 192–197.CrossRefGoogle Scholar
  15. 15.
    Tokita, M., Spark plasma sintering (SPS) method, systems, and applications, Handbook of Advanced Ceramics, New York: Academic, 2013, pp. 1149–1177.Google Scholar
  16. 16.
    Chuvildeev, V.N., Panov, D.V., Boldin, M.S., et al., Structure and properties of advanced materials obtained by spark plasma sintering, Acta Astronaut., 2015, vol. 109, pp. 172–176.CrossRefGoogle Scholar
  17. 17.
    Orlova, A.I., Koryttseva, A.K., Kanunov, A.E., et al., Fabrication of NZP-type ceramic materials by spark plasma sintering, Inorg. Mater., 2012, vol. 48, no. 3, pp. 313–317.CrossRefGoogle Scholar
  18. 18.
    Golovkina, L.S., Orlova, A.I., Chuvil’deev, V.N., et al., Spark plasma sintering of high-density fine-grained Y2.5Nd0.5Al5O12 + SiC composite ceramics, Mater. Res. Bull., 2018, vol. 103, pp. 211–215.CrossRefGoogle Scholar
  19. 19.
    Golovkina, L.S. Orlova, A.I., et al., Spark plasma sintering of fine-grain ceramic–metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for inert matrix fuel, Mater. Chem. Phys., 2018, vol. 214, pp. 516–526.CrossRefGoogle Scholar
  20. 20.
    Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, A.A., et al., Teplofizicheskie svoistva komponentov goryuchikh sistem (Thermophysical Properties of components of Fuel Systems), Moscow, 1992.Google Scholar
  21. 21.
    Mikhailov, G.G., Makrovets, L.A., and Smirnov, L.A., Thermodynamics of reactions of magnesium, aluminum, carbon, and yttrium with oxygen in iron-based melts, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Metall., 2016, vol. 16, no. 3, pp. 5–10.Google Scholar
  22. 22.
    Adylov, G.T., Mansurova, E.P., and Sigalov, L.M., Phase relations in air, Dokl. Akad. Nauk USSR, 1988, no. 4, pp. 29–31.Google Scholar
  23. 23.
    Chuvil'deev, V.N., Blagoveshchenskiy, Yu.V., Nokhrin, A.V., et al., Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis, J. Alloys. Compd., 2017, vol. 708, pp. 547–561.CrossRefGoogle Scholar
  24. 24.
    Andrievskii, A.R. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove. Spravochnoe izdanie (Strength of Refractory Compounds and Related Materials: A Handbook), Chelyabinsk: Metallurgiya, 1989.Google Scholar
  25. 25.
    Haneda, H., Miyazawa, Y., and Shirasaki, S., Oxygen diffusion in single crystal yttrium aluminum garnet, J. Cryst. Growth, 1984, vol. 68, no. 2, pp. 581–588.CrossRefGoogle Scholar
  26. 26.
    Diffusion in Non-Metallic Solids (Part 1), vol. 33B1 of Landolt–Börnstein—Group III Condensed Materials, Beke, D.L., Ed., 1999.Google Scholar
  27. 27.
    Reddy, K.P.R. and Cooper, A.R., Oxygen diffusion in magnesium aluminate spinel, J. Am. Ceram. Soc., 1981, vol. 64, no. 6, pp. 368–371.CrossRefGoogle Scholar
  28. 28.
    Ando, K. and Oishi, Y., Self-diffusion coefficients of oxygen ion in single crystals of MgO · nAl2O3 spinels, J. Chem. Phys., 1974, vol. 61, no. 2, pp. 625–629.CrossRefGoogle Scholar
  29. 29.
    Frost, H.J. and Ashby, M.F., Deformation-Mechanisms Maps, New York: Pergamon, 1982.Google Scholar
  30. 30.
    Nokhrin, A.V., Effect of grain-boundary diffusion acceleration during recrystallization of submicrocrystalline metals and alloys prepared by severe plastic deformation, Tech, Phys. Lett., 2012, vol. 38, no. 7, pp. 630–633.CrossRefGoogle Scholar
  31. 31.
    Foster, J.D. and Osterink, L.M., Index of refraction and expansion thermal coefficients of Nd:YAG, Appl. Opt., 1968, vol. 7, pp. 2428–2429.CrossRefGoogle Scholar
  32. 32.
    Kaprálik, I., Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4, Chem. Zvesti, 1969, vol. 23, pp. 665–670.Google Scholar
  33. 33.
    Pelleg, J., Diffusion in Ceramics, Solid Mechanics and Its Applications Series, New York: Springer, 2016, vol. 221.Google Scholar
  34. 34.
    Bratton, R.J., Initial sintering kinetics of MgAl2O4, J. Am. Ceram. Soc., 1969, vol. 52, no. 8, pp. 417–419.CrossRefGoogle Scholar
  35. 35.
    Bratton, R.J., Sintering and grain-growth kinetics of MgAl2O4, J. Am. Ceram. Soc., 1971, vol. 54, no. 3, pp. 141–143.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • L. S. Golovkina
    • 1
    Email author
  • A. V. Nokhrin
    • 1
  • M. S. Boldin
    • 1
  • E. A. Lantsev
    • 1
  • A. I. Orlova
    • 1
  • V. N. Chuvil’deev
    • 1
  • A. A. Murashov
    • 1
  • N. V. Sakharov
    • 1
  1. 1.Lobachevsky State University (National Research University)Nizhny NovgorodRussia

Personalised recommendations