Advertisement

Inorganic Materials

, Volume 54, Issue 11, pp 1093–1098 | Cite as

Influence of Crystal Structure and 3d Impurities on the Electronic Structure of the Topological Material Cd3As2

  • N. M. Shchelkachev
  • V. G. YarzhemskyEmail author
Article
  • 38 Downloads

Abstract

This paper presents a theoretical study of the effects of crystal structure and Mn and Co substitutions for Cd on the electronic structure of the topological material Cd3As2. We have carried out density functional theory calculations of the band structure and density of states in tetragonal and cubic Cd3As2, as well as in Cd3 –xMnxAs2 and Cd3 –xCoxAs2 crystals. The results indicate that the band structure of the cubic Cd3As2 phase differs significantly from that of a Dirac semimetal, characteristic of the tetragonal phase. It has also been shown that, after Co substitution for 1/24 of the Cd atoms, the structure of the density of 3d electron states is similar to that of the density of states in the magnetic semiconductor Cd3 –xMnxAs2, with a characteristic minimum at the Fermi energy. At the same time, in the case of analogous Mn substitution for Cd, the density of d-electron states has no such minimum.

Keywords:

topological materials Dirac semimetal Cd3As2 Mn Co magnetic semiconductors density functional theory (DFT) calculations band structure density of states (DOS) 

Notes

ACKNOWLEDGMENTS

This work was supported by the Federal Agency for Scientific Organizations of Russia, program 0033-2018-0001: Physics of Condensed Media. The computations in this study were performed using equipment at the Simulation and Data Processing Complex for Mega Class Research Systems Shared Research Facilities Center, Kurchatov Institute National Research Center; computational resources at the Joint Supercomputer Center, Russian Academy of Sciences; and the Uran supercomputer, Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences. V.G. Yarzhemsky acknowledges the support of the Russian Foundation for Basic Research grant no. 16-02-00295.

REFERENCES

  1. 1.
    Izotov, A.D., Sanygin, V.P., and Ponomarev, V.F., Genetic relationship between the crystal structures of II3–V2 polymorphs, Kristallografiya, 1978, vol. 23, no. 3, pp. 764–767.Google Scholar
  2. 2.
    Bokii, G.B., Goncharenko, G.I., Dvoryankina, G.G., Kovalev, V.I., and Shevchenko, V.Ya., Properties of β‑cadmium arsenide, Dokl. Akad. Nauk SSSR, 1970, vol. 195, no. 3, pp. 603–606.Google Scholar
  3. 3.
    Caron, L.G., Jay-Gerin, J.P., and Aubin, M.J., Energy-band structure of Cd3As2 at low temperatures and the dependence of the direct gap on temperature and pressure, Phys. Rev. B: Condens. Matter Mater. Phys., 1977, vol. 15, no. 15, pp. 3879–3887.CrossRefGoogle Scholar
  4. 4.
    Wallace, P.R., Electronic g-factor in Cd3As2, Phys. Status Solidi B, 1979, vol. 92, pp. 49–55.CrossRefGoogle Scholar
  5. 5.
    Dowgiałło-Plenkiewicz, B. and Plenkiewicz, P., Inverted band structure of Cd3As2, Phys. Status Solidi B, 1979, vol. 94, pp. K57–K60.CrossRefGoogle Scholar
  6. 6.
    Bansil, A., Lin, H., and Das, T., Colloquium: topological band theory, Rev. Mod. Phys., 2016, vol. 88, paper 021 004.Google Scholar
  7. 7.
    Kresse, G. and Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1993, vol. 6, pp. 15–50.CrossRefGoogle Scholar
  8. 8.
    Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., and Buongiorno, M., Advanced capabilities for materials modelling with quantum ESPRESSO, J. Phys.: Condens. Matter, 2017, vol. 29, paper 465 901.Google Scholar
  9. 9.
    Wang, Z., Weng, H., Wu, Q., Dai, X., and Fang, Z., Three-dimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev., 2013, vol. 88, paper 125 427.Google Scholar
  10. 10.
    Ali, M.N., Gibson, Q., Jeon, S., Zhou, B.B., Yazdani, A., and Cava, R.J., The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene, Inorg. Chem., 2014, vol. 53, pp. 4062–4067.CrossRefGoogle Scholar
  11. 11.
    Conte, A.M., Pulci, O., and Bechstedt, F., Electronic and optical properties of topological semimetal Cd3As2, Sci. Rep., 2017, vol. 7, paper 45 500.Google Scholar
  12. 12.
    Borisenko, S., Gibson, S.Q., Evtushinsky, D., Zabolotnyy, V., Büchner, B., and Cava, R.J., Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett., 2014, vol. 113, paper 027 603.Google Scholar
  13. 13.
    Liu, Z.K., Jiang, J., Zhou, B., Wang, Z.J., Zhang, Y., Weng, H.M., Prabhakaran, D., Mo, S-K., Peng, H., Dudin, P., Kim, T., Hoesch, M., Fang, Z., Dai, X., Shen, Z.X., Feng, D.L., Hussain, Z., and Chen, Y.L., A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater., 2014, vol. 13, pp. 677–680.CrossRefGoogle Scholar
  14. 14.
    Moll, P.J.W., Nair, N.L., Helm, T., Potter, A.C., Kimchi, I., Vishwanath, A., and Analytis, J.G., Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2, Nature, 2016, vol. 535, pp. 266–270.CrossRefGoogle Scholar
  15. 15.
    Aggarwal, L., Gaurav, A., Thakur, G.S., Haque, Z., Ganguli, A.K., and Sheet, G., Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2, Nat. Mater., 2016, vol. 15, pp. 32–37.CrossRefGoogle Scholar
  16. 16.
    Cao, J., Liang, S., Zhang, C., Liu, Y., Huang, J., Jin, Z., Chen, Z.G., Wang, Z., Wang, Q., Zhao, J., Li, S., Dai, X., Zou, J., Xia, Z., Li, L., and Xiu, F., Landau level splitting in Cd3As2 under high magnetic fields, Nat. Commun., 2015, vol. 6, no. 7779, pp. 1–6.Google Scholar
  17. 17.
    Akrap, A., Hak, M., Tchoumakov, S., et al., Magneto-optical signature of massless Kane electrons in Cd3As2, Phys. Rev. Lett., 2016, vol. 117, paper 136 401.Google Scholar
  18. 18.
    Kane, E.O., Band structure of indium antimonide, J. Phys. Chem. Solids, 1957, vol. 1, no. 4, pp. 249–261.CrossRefGoogle Scholar
  19. 19.
    Goryunov, Yu.V. and Nateprov, A.N., Influence of europium doping on magnetic properties of 3D topological semimetal Cd3As2 from ESR data, Phys. Solid State, 2018, vol. 60, no. 1, pp. 68–74.CrossRefGoogle Scholar
  20. 20.
    Marenkin, S.F., Trukhan, V.M., Fedorchenko, I.V., Trukhanov, S.V., and Shelkovaya, T.V., Magnetic and electrical properties of Cd3As2 + MnAs composite, Russ. J. Inorg. Chem., 2014, vol. 59, no. 4, pp. 355–359.CrossRefGoogle Scholar
  21. 21.
    Marenkin, S.F., Izotov, A.D., Fedorchenko, I.V., and Novotortsev, V.M., Manufacture of magnetic granular structures in semiconductor–ferromagnet systems, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 295–300.CrossRefGoogle Scholar
  22. 22.
    Novotortsev, V.M., Kochura, A.V., and Marenkin, S.F., New ferromagnetics based on manganese-chalcopyrites AIIBIV \({\text{C}}_{2}^{{\text{V}}}\), Inorg. Mater, 2010, vol. 46, no. 13, pp. 1421–1436.CrossRefGoogle Scholar
  23. 23.
    Dobrowolska, M., Tivakornsasithorn, K., Liu, X., Furdyna, J.K., Berciu, M., Yu, K.M., and Walukiewicz, W., Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band, Nat. Mater., 2012, vol. 11, pp. 444–449.CrossRefGoogle Scholar
  24. 24.
    Nemec, P., Nova, V., Tesarova, N., Rozkotova, E., Reichlova, H., Butkovicova, D., Trojanek, F., Olejn, K., Maly, P., Campion, R.P., Gallagher, B.L., Sinova, J., and Jungwirth, T., The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As, Nat. Commun., 2013, vol. 4, p. 2426.CrossRefGoogle Scholar
  25. 25.
    Kovalev, O.V., Neprivodimye i indutsirovannye predstavleniya i kopredstavleniya fedorovskikh grupp (Irreducible and Induced Representations and Corepresentations of Space Groups), Moscow: Nauka, 1986.Google Scholar
  26. 26.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.CrossRefGoogle Scholar
  27. 27.
    Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., and Blügel, S., Reproducibility in density functional theory calculations of solids, Science, 2016, vol. 351, no. 6280, pp. 1415–1420.CrossRefGoogle Scholar
  28. 28.
    Di Marco, I., Thunstro, P., Katsnelson, M.I., Sadowski, J., Karlsson, K., Lebegue, S., Kanski, J., and Eriksson, O., Electron correlations in MnxGa1 – xAs as seen by resonant electron spectroscopy and dynamical mean field theory, Nat. Commun., 2013, p. 3645.Google Scholar
  29. 29.
    Yarzhemsky, V.G., Murashov, S.V., Nefedov, V.I., and Murav’ev, E.N., Electronic structure and chemical bonds in the magnetic semiconductors MnxCd1 – xGeAs2 and MnxZn1 – xGeAs2, Inorg. Mater., 2008, vol. 44, no. 11, pp. 1169–1175.CrossRefGoogle Scholar
  30. 30.
    Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Electronic structure and exchange interaction in Ga1 – x-MnxAs and In1 – xMnxSb, Inorg. Mater., 2016, vol. 52, no. 2, pp. 89–93.CrossRefGoogle Scholar
  31. 31.
    Yarzhemsky, V.G., Murashov, S.V., and Izotov, A.D., Calculation of the electronic structure and exchange interaction in the InSb and GaAs semiconductors codoped with Mn and Ni, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1131–1135.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Vereshchagin Institute of High-Pressure Physics, Russian Academy of SciencesTroitskMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  4. 4.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations