Advertisement

Inorganic Materials

, Volume 54, Issue 9, pp 965–969 | Cite as

Hybrid Composite Materials Based on Natural Layered Silicates

  • N. P. Shapkin
  • I. G. Khal’chenko
  • A. E. PanasenkoEmail author
  • L. B. Leont’ev
  • V. I. Razov
Article

Abstract

We have prepared composite materials based on natural silicates: vermiculite modified with cellulose and nontronite modified with an alkaline rice husk hydrolysate. The materials have been characterized by X-ray diffraction, IR spectroscopy, and positron annihilation spectroscopy, and their specific surface area, sorption capacity (for model dye solutions), and tribological properties have been assessed. It has been shown that cellulose in the vermiculite-based composite material is incorporated between the aluminosilicate layers, forming a new crystalline phase. The nontronite-based composite material reduces the wear of friction pairs by a factor of 2.5 to 7.

Keywords

layered silicates vermiculite nontronite composite materials tribological properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharov, Yu.I., Mal’kova, M.Yu., Shamshurov, V.M., and Shamshurov, A.V., Geologiya, mineralogiya, petrografiya (Geology, Mineralogy, and Petrography), Moscow: Assotsiatsiya Stroitel’nykh Vuzov, 2008.Google Scholar
  2. 2.
    Arjmandi, R., Hassan, A., Mohamad Haafiz, M.K., and Zakariac, Z., Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites, Int. J. Biol. Macromol., 2015, vol. 81, pp. 91–99.Google Scholar
  3. 3.
    Ray, S.S. and Bousmina, M., Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world, Prog. Mater. Sci., 2005, vol. 50, no. 8, pp. 962–1079.CrossRefGoogle Scholar
  4. 4.
    Zemnukhova, L.A., Panasenko, A.E., Tsoi, E.A., Fedorishcheva, G.A., Shapkin, N.P., Artem’yanov, A.P., and Maiorov, V.Yu., Composition and structure of amorphous silica produced from rice husk and straw, Inorg. Mater., 2014, vol. 50, no. 1, pp. 75–81.CrossRefGoogle Scholar
  5. 5.
    Grafutin, V.I. and Prokop’ev, E.P., Application of positron annihilation spectroscopy in structural studies, Usp. Fiz. Nauk, 2002, vol. 172, no. 1, pp. 67–82.CrossRefGoogle Scholar
  6. 6.
    Shapkin, N.P., Leont’ev, L.B., Leont’ev, A.L., Korochentsev, V.V., and Shkuratov, A.L., Organomodified aluminosilicates as friction geomodifiers, Russ. J. Appl. Chem., 2012, vol. 85, no. 10, pp. 1509–1513.CrossRefGoogle Scholar
  7. 7.
    Leont’ev, L.B., Shapkin, N.P., Leont’ev, A.L., and Makarov, V.N., Inherent features of the growth of a metal–ceramic coating on friction surfaces of steel parts, Metalloobrabotka, 2014, vol. 84, no. 6, pp. 41–45.Google Scholar
  8. 8.
    Sembiring, S., Simanjuntak, W., Manurung, P., Asmi, D., and Low, I.M., Synthesis and characterisation of gelderived mullite precursors from rice husk silica, Ceram. Int., 2014, vol. 40, pp. 7067–7072.CrossRefGoogle Scholar
  9. 9.
    Zulkifli, N.S.C., Ab Rahman, I., Mohamad, D., and Husein, A., A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler, Ceram. Int., 2013, vol. 39, pp. 4559–4567.Google Scholar
  10. 10.
    Zemnukhova, L.A., Fedorishcheva, G.A., Egorov, A.G., and Sergienko, V.I., Recovery conditions, impurity composition, and characteristics of amorphous silicon dioxide from wastes formed in rice production, Russ. J. Appl. Chem., 2005, vol. 78, no. 2, pp. 319–323.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. P. Shapkin
    • 1
  • I. G. Khal’chenko
    • 1
  • A. E. Panasenko
    • 1
    • 2
    Email author
  • L. B. Leont’ev
    • 1
  • V. I. Razov
    • 1
  1. 1.Far East Federal UniversityVladivostokRussia
  2. 2.Institute of Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations