Effect of Oxygen Impurities and Synthesis Temperature on the Phase Composition of the Products of Self-Propagating High-Temperature Synthesis of Si3N4
Article
First Online:
Received:
- 6 Downloads
Abstract
It has been shown that raising the oxygen impurity concentration in starting mixture components reduces the temperature of the α–β phase transition of silicon nitride. At oxygen contents above 2 wt %, the phase transition involves silicon oxynitride formation and decomposition. With decreasing oxygen impurity concentration in silicon nitride, the temperature of the α–β phase transition rises, approaching the dissociation temperature.
Keywords
silicon nitride oxygen impurities α-phase phase transition dissociation temperaturePreview
Unable to display preview. Download preview PDF.
References
- 1.Merzhanov, A.G., Borovinskaya, I.P., and Martynenko, V.M., USSR Inventor’s Certificate no. 1533215, 1983.Google Scholar
- 2.Zakorzhevsky, V.V. and Borovinskaya, I.P., Combustion synthesis of silicon nitride using ultrafine silicon powders, Powder Metall. Met. Ceram., 2009, vol. 48, nos. 7–8, pp. 375–380.CrossRefGoogle Scholar
- 3.Suematsu, H., Mitchel, T.E., Fukunaga, O., et al., The a–β transformation in silicon nitride single crystals, J. Am. Ceram. Soc., 1997, vol. 80, no. 3, pp. 615–620.CrossRefGoogle Scholar
- 4.Wang, L., Roy, S., Sigmund, W., and Aldinger, F., In situ incorporation of sintering additives in Si3N4 powder by a combustion process, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 61–65.CrossRefGoogle Scholar
- 5.Greskovich, C. and Prochazka, S., Observation on the a–β Si3N4 transformation, J. Am. Ceram. Soc., 1977, vol. 60, nos. 9–10, pp. 170–172.Google Scholar
- 6.Bowen, L.J., Weston, R.J., Carrithers, T.G., and Brook, R.J., Hot-pressing and the a–β phase transformation in silicon nitride, J. Mater. Sci., 1978, vol. 13, pp. 341–350.CrossRefGoogle Scholar
- 7.Gausckler, L.J., Hohnke, H., and Tien, T.Y., The system Si3N4-SiO2-Y2O3, J. Am. Ceram. Soc., 1980, vol. 63, pp. 35–37.CrossRefGoogle Scholar
- 8.Jian-jie Liang, Topor, L., and Navrotsky, A., Silicon nitride: enthalpy of formation of the a-and β-polymorphs and the effect of C and O impurities, J. Mater. Res., 1999, vol. 14, no. 5, pp. 1959–1968.CrossRefGoogle Scholar
- 9.Zakorzhevsky, V.V. and Borovinskaya, I.P., Some regularities of a-Si3N4 synthesis in a commercial SHS reactor, Int. J. Self-Propag. High-Temp. Synth., 2000, vol. 9, no. 2, pp. 171–191.Google Scholar
- 10.Per-Olov Käll, Quantitative phase analysis of Si3N4-based materials, Chem. Scr., 1988, vol. 28, pp. 439–446.Google Scholar
- 11.Levis, H.V., Reed, C.J., and Butler, N.D., Pressureless-sintered ceramics based on the compound Si2N3O, Mater. Sci. Eng., 1985, vol. 8, no. 1, pp. 87–94.Google Scholar
- 12.Rocabois, P., Chatillon, C., and Bernard, C., Thermodynamics of the Si–O–N system: I. High-temperature study of the vaporization behavior of silicon nitride by mass spectrometry, J. Am. Ceram. Soc., 1996, vol. 79, no. 5, pp. 1351–1360.CrossRefGoogle Scholar
- 13.Rocabois, P., Chatillon, C., and Bernard, C., Thermodynamics of the Si–O–N system: II. Stability of Si2N3O(s) by high-temperature mass spectrometry vaporization, J. Am. Ceram. Soc., 1996, vol. 79, no. 5, pp. 1361–1365.CrossRefGoogle Scholar
- 14.Kulikov, I.S., Termodinamika karbidov i nitridov (Thermodynamics of Carbides and Nitrides), Chelyabinsk: Metallurgiya Chelyabinskoe Otd., 1988.Google Scholar
- 15.Andrievski, R.A., Melting point and dissociation of silicon nitride, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 3, pp. 237–243.Google Scholar
- 16.Andrievskii, R.A., Khromov, Yu.F., et al., Silicon nitride dissociation, Zh. Fiz. Khim., 1994, vol. 68, no. 1, pp. 5–8.Google Scholar
- 17.Andrievskii, R.A. and Lyutikov, R.A., High-temperature dissociation of silicon nitride, Russ. J. Phys. Chem. A, 1996, vol. 70, no. 3, pp. 526–528.Google Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018