Inorganic Materials

, Volume 54, Issue 4, pp 354–360 | Cite as

Self-Organized Growth of Clustered Structures in La0.6–xNd x Sr0.3Mn1.1O3–δ Doped Perovskites

  • Z. A. Samoilenko
  • N. N. Ivakhnenko
  • E. I. Pushenko
  • Yu. S. Prilipko
  • A. V. Pashchenko
Article

Abstract

Our results on the atomic order in La0.6–xNd x Sr0.3Mn1.1O3–δ manganites with partial Nd substitution for La (x = 0–0.4) demonstrate that all of the materials consist of differently sized groups: microcrystalline groups with long-range atomic order, D = 300–600 Å in size; clustered groups with mesoscopic atomic order and D = 100–200 Å; amorphous clustered groups with D = 20–30 Å; and a disordered material with short-range atomic order, on a length scale of two or three interatomic distances (D ~ 10 Å). It has been shown that, in the case of partial Nd substitution for La (x = 0.1–0.2) in the manganite, clusters 100–200 Å in size, as well as those of the rhombohedral phase 20–50 Å in size, initiate an FM → AFM magnetic phase transition in the range 200–250 K. Neodymium substitution for half of the lanthanum (in La0.3Nd0.3Sr0.3Mn1.1O3–δ) has been found to result in the development of self-organization processes, with a reduction in cluster size fluctuations in the range ΔD ≈ ±50 Å in the orthorhombic ferromagnetic and rhombohedral antiferromagnetic phases.

Keywords

perovskites clusters phase transition X-ray diffraction Curie temperature differential magnetic susceptibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dagotto, E., Hotta, T., and Moreo, A., Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep., 2001, vol. 344, nos. 1–3, pp. 1–153.CrossRefGoogle Scholar
  2. 2.
    Nagaev, E.L., Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors, Phys. Rep., 2001, vol. 346, no. 6, pp. 387–531.CrossRefGoogle Scholar
  3. 3.
    Edwards, D.M., Ferromagnetism and electron-phonon coupling in the manganites, Adv. Phys., 2002, vol. 51, no. 5, pp. 1259–1318.CrossRefGoogle Scholar
  4. 4.
    Pashchenko, V.P., Shemyakov, A.A., Prokopenko, V.K., Derkachenko, V.N., Cherenkov, O.P., Mihajlov, V.I., Varyukhin, V.N., Dyakonov, V.P., and Szymczak, H., Effect of substitution of Mn by Cr on the NMR and magnetoresistance in La0.6Sr0.2Mn1.2–xCrxO3 (0 < x < 0.2), J. Magn. Magn. Mater., 2000, vol. 220, pp. 52–58.CrossRefGoogle Scholar
  5. 5.
    Dzyaloshinskii, I.E., Theory of helicoid structures in antiferromagnets, Zh. Eksp. Teor. Fiz., 1964, vol. 46, no. 4, pp. 1420–1437.Google Scholar
  6. 6.
    Bar’yakhtar, V.G. and Stefanovskii, E.P., Symmetrygoverned incommensurate magnetic phases in magnetodielectric materials, Fiz. Nizk. Temp. (Kyiv), 1996, vol. 22, no. 8, pp. 904–911.Google Scholar
  7. 7.
    Bar’yakhtar, V.G., Stefanovskii, E.P., and Yablonskii, D.A., Phenomenological theory of double-exchange longperiod structures in orthorhombic antiferromagnets, Fiz. Tverd. Tela (Leningrad), 1986, vol. 28, no. 2, pp. 504–509.Google Scholar
  8. 8.
    Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.CrossRefGoogle Scholar
  9. 9.
    Vonsovskii, S.V., Magnetizm (Magnetism), Moscow: Nauka, 1971.Google Scholar
  10. 10.
    Pashchenko, A.V., Pashchenko, V.P., Prokopenko, V.K., Revenko, Yu.F., Kisel, N.G., Kamenev, V.I., Sil’cheva, A.G., Ledenev, N.A., Burkhovetskii, V.V., and Levchenko, G.G., Structural and magnetic inhomogeneities, phase transitions, 55Mn nuclear magnetic resonance, and magnetoresistive properties of La0.6–xNdx-Sr0.3Mn1.1O3–δ ceramics, Phys. Solid State, 2014, vol. 56, no. 5, pp. 955–966.CrossRefGoogle Scholar
  11. 11.
    Pashchenko, V.P., Khartsev, S.I., Cherenkov, O.P., Shemyakov, A.A., Samoilenko, Z.A., Loiko A.D., and Kamenev, V.I., Nonstoichiometry, structural perfection, and properties of La1–xMn1 + xO3 ± δ magnetoresistive materials, Inorg. Mater., 1999, vol. 35, no. 12, pp. 1294–1300.Google Scholar
  12. 12.
    Samoilenko, Z.A., Ivakhnenko, N.N., Pashchenko, A.V., Pashchenko, V.P., Prilipko, S.Yu., Revenko, Yu.F., and Kisel’, N.G., Nanoclustering in (Nd0.7Sr0.3)1–x-Mn1 + xO3 ± δ solid solutions, Inorg. Mater., 2011, vol. 47, no. 9, pp. 1019–1024.CrossRefGoogle Scholar
  13. 13.
    Pashchenko, A.V., Pashchenko, V.P., Revenko, Yu.F., Prokopenko, V.K., Shemyakov, A.A., Turchenko, V.A., Sycheva, V.Ya., Efros, B.M., Komarov, V.P., and Gusakova, L.G., Effect of excess manganese and sintering temperature on the structural perfection and magnetoresistive properties of La1–xMn1 + xO3 ± δ ceramics, Metallofiz. Noveishie Tekhnol., 2010, vol. 32, no. 4, pp. 487–504.Google Scholar
  14. 14.
    Izyumov, Yu.A. and Skryabin, Yu.N., Double exchange model and unique properties of manganites, Usp. Fiz. Nauk, 2001, vol. 171, pp. 121–148.CrossRefGoogle Scholar
  15. 15.
    Okunev, V.D., Samoilenko, Z.A., Svistunov, V.M., Abal’oshev, A., Dinowska, E., Gierlowski, P., Klimov, A., and Lewandowski, S.J., Amorphous state and pulsed laser deposition of YBa2Cu3O7–δ thin films, J. Appl. Phys., 1999, vol. 85, no. 10, pp. 7282–7290.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Z. A. Samoilenko
    • 1
  • N. N. Ivakhnenko
    • 1
    • 2
  • E. I. Pushenko
    • 1
  • Yu. S. Prilipko
    • 3
  • A. V. Pashchenko
    • 4
  1. 1.Galkin Institute for Physics and TechnologyNational Academy of Sciences of UkraineDonetskUkraine
  2. 2.Tugan-Baranovskii National University of Economics and CommerceDonetskUkraine
  3. 3.Donetsk National Technical UniversityDonetskUkraine
  4. 4.Galkin Institute for Physics and TechnologyNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations