Inorganic Materials

, Volume 54, Issue 4, pp 392–400 | Cite as

Formation and Acid–Base Surface Properties of Highly Dispersed η-Al2O3 Nanopowders

  • N. E. Kotlovanova
  • A. N. Matveeva
  • Sh. O. Omarov
  • V. V. Sokolov
  • D. N. Akbaeva
  • V. I. Popkov
Article

Abstract

Highly dispersed η-Al2O3-based nanopowders have been prepared via glycine–nitrate combustion followed by heat treatment in air. The resultant materials have been characterized by X-ray diffraction, Fourier transform IR spectroscopy, scanning electron microscopy, simultaneous thermal analysis, and other techniques. We have optimized the glycine-to-nitrate ratio (G/N = 0.2) and found heat treatment conditions for combustion products (isothermal holding at a temperature of 700°C for 6 h) that allow one to obtain single- phase nanocrystalline η-Al2O3 powders with an average particle size of 5 ± 1 nm and specific surface area of 54 ± 5 m2/g. The acid–base surface properties of the η-Al2O3 nanopowder have been analyzed using pyridine sorption–desorption processes as an example. The specific concentrations of weak, intermediate, and strong Lewis acid centers on the surface of the η-Al2O3 nanocrystals have been shown to markedly exceed those on the surface of commercially available γ-Al2O3 (A-64). The synthesized nanopowders can thus be used as effective supports of acid catalysts.

Keywords

aluminum oxide nanocrystals glycine–nitrate combustion acid centers adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burukhin, A.A., Churagulov, B.R., Oleynikov, N.N., and Knot’ko, A.V., Hydrothermal synthesis of mesoporous iron oxide powders, Proc. Joint 6th Int. Symp. on Hydrothermal Reactions/4th Conf. on Solvo-Thermal Reactions, Kochi, 2000, pp. 561–564.Google Scholar
  2. 2.
    Meskin, P.E., Gavrilov, A.I., Maksimov, V.D., Ivanov, V.K., and Churagulov, B.R., Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia, Russ. J. Inorg. Chem., 2007, vol. 52, no. 11, pp. 1648–1656.CrossRefGoogle Scholar
  3. 3.
    Almjasheva, O.V. and Gusarov, V.V., Hydrothermal synthesis of nanosized and amorphous alumina in the ZrO2–Al2O3–H2O system, Russ. J. Inorg. Chem., 2007, vol. 52, no. 8, pp. 1194–1200.CrossRefGoogle Scholar
  4. 4.
    Ivanov, V.K., Baranchikov, A.E., Polezhaeva, O.S., Kopitsa, G.P., and Tret’yakov, Yu.D., Oxygen nonstoichiometry of nanocrystalline ceria, Russ. J. Inorg. Chem., 2010, vol. 55, no. 3, pp. 325–326.CrossRefGoogle Scholar
  5. 5.
    Jayakumar, G., Irudayaraj, A.A., Raj, A.D., and Anusuya, M., Investigation on the preparation and properties of nanostructured cerium oxide, Nanosyst. Phys. Chem. Math., 2016, vol. 7, no. 4, pp. 728–731.CrossRefGoogle Scholar
  6. 6.
    Vasilevskaya, A.K. and Al’myasheva, O.V., Characteristic features of phase formation in the ZrO2–TiO2 system under hydrothermal conditions, Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 4, pp. 75–81.Google Scholar
  7. 7.
    Cherepanov, V.A., Gavrilova, L.Ya., Volkova, N.E., Urusov, A.S., Aksenova, T.V., and Kiselev, E., Phase equilibria and thermodynamic properties of oxide systems on the basis of rare earth, alkaline earth and 3d-transition (Mn, Fe, Co) metals. A short overview of, Chim. Tech. Acta, 2015, vol. 2, no. 4, pp. 273–305.CrossRefGoogle Scholar
  8. 8.
    Vasilevskaya, A., Almjasheva, O.V., and Gusarov, V.V., Peculiarities of structural transformations in zirconia nanocrystals, J. Nanopart. Res., 2016, vol. 18, no. 7, paper188.Google Scholar
  9. 9.
    Ye, T., Guiwen, Z., Weiping, Z., and Shangda, X., Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors, Mater. Res. Bull., 1997, vol. 32, no. 5, pp. 501–506.CrossRefGoogle Scholar
  10. 10.
    Rempel, A.A., Nanotechnologies, properties, and application of nanostructured materials, Usp. Khim., 2007, vol. 76, no. 5, pp. 474–500.CrossRefGoogle Scholar
  11. 11.
    Shcherbakov, A.B., Ivanov, V.K., Zholobak, N.M., Ivanova, O.S., Krysanov, E.Yu., Baranchikov, A.E., Spivak, N.Ya., and Tretyakov, Yu.D., Nanocrystalline ceria based materials—perspectives for biomedical application, Biophysics (Moscow), 2011, vol. 56, no. 6, pp. 987–1004.CrossRefGoogle Scholar
  12. 12.
    Kozhevnikov, V.L., Leonidov, I.A., and Patrakeev, M.V., Mixed-conducting ceramic membranes and their applications, Usp. Khim., 2013, vol. 82, no. 8, pp. 772–782.CrossRefGoogle Scholar
  13. 13.
    Upadhyay, P.R. and Srivastava, V., Titanium dioxide supported ruthenium nanoparticles for carbon sequestration reaction, Nanosyst. Phys., Chem. Math., 2016, vol. 7, no. 6, pp. 513–517.CrossRefGoogle Scholar
  14. 14.
    Zhou, R.S. and Snyder, R.L., Structures and transformation mechanisms of the η, γ and θ transition aluminas, Acta Crystallogr., Sect. B: Struct. Sci., 1991, vol. 47, no. 5, pp. 617–630.CrossRefGoogle Scholar
  15. 15.
    Trueba, M. and Trasatti, S.P., γ-Alumina as a support for catalysts: a review of fundamental aspects, Eur. J. Inorg. Chem., 2005, vol. 2005, no. 17, pp. 3393–3403.CrossRefGoogle Scholar
  16. 16.
    Emeis, C.A., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal., 1993, vol. 141, no. 2, pp. 347–354.CrossRefGoogle Scholar
  17. 17.
    Aleksenskii, A.E., Baidakova, M.V., Vul’, A.Ya., Davydov, V.Yu., and Pevtsova, Yu.A., Diamond–graphite phase transition in ultradisperse diamond clusters, Fiz. Tverd. Tela (St. Petersburg), 1997, vol. 39, no. 6, pp. 1125–1034.Google Scholar
  18. 18.
    Zhuravlev, V.D., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., Grigorov, I.G., Bamburov, V.G., Beketov, A.R., and Baranov, M.V., Glycine–nitrate combustion synthesis of finely dispersed alumina, Glass. Phys. Chem., 2010, vol. 36, no. 4, pp. 506–512.CrossRefGoogle Scholar
  19. 19.
    Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., Perelyaeva, L.A., Baklanova, I.V., Sivtsova, O.V., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., and Grigorov, I.G., Solution combustion synthesis of a-Al2O3 using urea, Ceram. Int., 2013, vol. 39, no. 2, pp. 1379–1384.CrossRefGoogle Scholar
  20. 20.
    Popkov, V.I. and Almjasheva, O.V., Yttrium orthoferrite YFeO3 nanopowders formation under glycine–nitrate combustion conditions, Russ. J. Appl. Phys., 2014, vol. 87, no. 2, pp. 167–171.Google Scholar
  21. 21.
    Khaliullin, Sh.M., Bamburov, V.G., Russkikh, O.V., Ostroushko, A.A., and Zhuravlev, V.D., CaZrO3 synthesis in combustion reactions with glycine, Dokl. Chem., 2015, vol. 461, no. 2, pp. 93–95.CrossRefGoogle Scholar
  22. 22.
    Dyachenko, S.V., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, A.I., Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type produced by glycine–nitrate combustion, Russ. J. Appl. Phys., 2016, vol. 89, no. 4, pp. 535–539.Google Scholar
  23. 23.
    Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Gusarov, V.V., Special features of formation of nanocrystalline BiFeO3 via the glycine–nitrate combustion method, Russ. J. Gen. Chem., 2016, vol. 86, no. 10, pp. 2256–2262.CrossRefGoogle Scholar
  24. 24.
    Komlev, A.A. and Vilezhaninov, E.F., Glycine–nitrate combustion synthesis of nanopowders based on nonstoichiometric magnesium–aluminum spinel, Russ. J. Appl. Phys., 2013, vol. 86, no. 9, pp. 1344–1350.Google Scholar
  25. 25.
    Khaliullin, S.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: thermodynamic aspects, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 139–148.CrossRefGoogle Scholar
  26. 26.
    Devyatkov, S.Yu., Zinnurova, A.A., Aho, A., Kronlund, D., Peltonen, J., Kuzichkin, N.V., Lisitsyn, N.V., and Murzin, D.Yu., Shaping of sulfated zirconia catalysts by extrusion: understanding the role of binders, Ind. Eng. Chem. Res., 2016, vol. 55, no. 23, pp. 6595–6606.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. E. Kotlovanova
    • 1
    • 2
  • A. N. Matveeva
    • 1
  • Sh. O. Omarov
    • 1
  • V. V. Sokolov
    • 2
  • D. N. Akbaeva
    • 3
  • V. I. Popkov
    • 1
    • 2
  1. 1.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia
  3. 3.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations