Inorganic Materials

, Volume 53, Issue 10, pp 1075–1079 | Cite as

Synthesis and properties of bone cement materials in the calcium phosphate–calcium sulfate system

  • V. V. Smirnov
  • M. A. Goldberg
  • D. R. Khairutdinova
  • O. S. Antonova
  • S. V. Smirnov
  • A. A. Konovalov
  • S. M. Barinov
Article
  • 40 Downloads

Abstract

We have studied the influence of the cement liquid composition and the relationship between the components of the calcium sulfate–precipitated calcium phosphate system in a wide concentration range on the setting time, phase composition, microstructure, and mechanical properties of cement materials. The results demonstrate that the greatest promise is held by a magnesium phosphate-based cement liquid which, when mixed with powder, forms a high-strength phase, leading to a considerable increase in the strength of the cements. The addition of 20 wt % calcium sulfate to the starting mixture ensures dispersion hardening of the cements. We have obtained new cement materials offering a strength of up to 60 MPa, which are expected to find medical applications.

Keywords

gypsum calcium phosphates biocements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maeda, S.T., Bramane, C.M., Taga, R., Garcia, R.B., Moraes, I.G.D., and Bernadineli, N., Evaluation of surgical cavities filled with three types of calcium sulfate, J. Appl. Oral Sci., 2007, vol. 15, no. 5, pp. 416–419.CrossRefGoogle Scholar
  2. 2.
    Pietrzak, W.S. and Ronk, R., Calcium sulfate bone void filler: a review and a look ahead, J. Craniofac. Surgery, 2000, vol. 11, no. 4, pp. 327–333.CrossRefGoogle Scholar
  3. 3.
    Orsini, G., Ricci, J., Scarano, A., Pecora, G., Petrone, G., Iezzi, G., and Piattelli, A., Bone defect healing with calcium sulfate particles and cement: an experimental study in rabbit, J. Biomed. Mater. Res., Part B: Appl. Biomater., 2004, vol. 68, no. 2, pp. 199–208.CrossRefGoogle Scholar
  4. 4.
    Borrelli, J., Prickett, W.D., and Ricci, W.M., Treatment of nonunions and osseous defects with bone graft and calcium sulfate, Clinical Orthopaedics Relat. Res., 2003, vol. 411, pp. 245–254.CrossRefGoogle Scholar
  5. 5.
    Privol’nev, V.V., Rodin, A.V., and Karakulina, E.V., Local treatment with antibiotics for bone tissue infection healing, Klinich. Mikrobiol. Antimikrobn. Khimioterap., 2012, vol. 14, no. 2, pp. 118–132.Google Scholar
  6. 6.
    Turner, T.M., Urban, R.M., Hall, D.J., Chye, P.C., Segreti, J., and Gitelis, S., Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets, Clinical Orthopaedics Relat. Res., 2005, vol. 437, pp. 97–104.CrossRefGoogle Scholar
  7. 7.
    Opanasyuk, I.V. and Opanasyuk, Yu.V., Targeted tissue regeneration concept. Parodontological membranes, Sovrem. Stomatol., 2004, no. 4, pp. 57–62.Google Scholar
  8. 8.
    De Leonardis, D. and Pecora, G.E., Augmentation of the maxillary sinus with calcium sulfate: one-year clinical report from a prospective longitudinal study, Int. J. Oral Maxillofac. Implants, 1999, vol. 14, no. 6, pp. 869–878.Google Scholar
  9. 9.
    Bohner, M., Design of ceramic-based cements and putties for bone graft substitution, Eur. Cells Mater., 2010, vol. 20, no. 1, pp. 3–12.Google Scholar
  10. 10.
    Dorozhkin, S.V., Calcium orthophosphate cements and concretes, Materials, 2009, vol. 2, no. 1, pp. 221–291.CrossRefGoogle Scholar
  11. 11.
    Barinov, S.M., Smirnov, V.V., Khairutdinova, D.R., Smirnov, S.V., and Antonova, O.S., Composite cement materials in the dicalcium phosphate–gypsum system, Perspekt. Mater., 2016, no. 11, pp. 33–38.Google Scholar
  12. 12.
    Wu, F., Wei, J., Guo, H., Chen, F., Hong, H., and Liu, C., Self-setting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration, Acta Biomater., 2008, vol. 4, no. 6, pp. 1873–1884.CrossRefGoogle Scholar
  13. 13.
    Kogan, V.B., Ogorodnikov, S.K., and Kafarov, V.V., Spravochnik po rastvorimosti (Solubility Handbook), Leningrad: Nauka, 1969, vol.3.Google Scholar
  14. 14.
    Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., Chemistry of calcium phosphate-based inorganic biomaterials, Ross. Khim. Zh., 2004, vol. 48, no. 4, pp. 52–64.Google Scholar
  15. 15.
    GOST (State Standard) 31568-2012: Dental Gypsums, 2012 (ISO 6873:1998, MOD).Google Scholar
  16. 16.
    Smirnov, V.V., Rau, J.V., Generosi, A., Rossi Albertini, V., Ferro, D., and Barinov, S.M., Elucidation of real-time hardening mechanism of two novel high-strength calcium phosphate bone cements, J. Biomed. Mater. Res. B, 2009, vol. 93, pp. 74–83.Google Scholar
  17. 17.
    Generosi, A., Smirnov, V.V., and Rau, J.V., Rossi Albertini, V., Ferro, D., and Barinov, S.M., Phase development in the hardening process of two calcium phosphate bone cements: an energy dispersive X-ray diffraction study, Mater. Res. Bull., 2008, vol. 43, pp. 561–571.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Smirnov
    • 1
  • M. A. Goldberg
    • 1
  • D. R. Khairutdinova
    • 1
  • O. S. Antonova
    • 1
  • S. V. Smirnov
    • 1
  • A. A. Konovalov
    • 1
  • S. M. Barinov
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations