Inorganic Materials

, Volume 53, Issue 9, pp 987–993 | Cite as

Preparation of thin bilayer coatings based on lanthanum, nickel, and cerium mixed oxides by electrophoretic deposition

  • E. G. Kalinina
  • E. Yu. Pikalova
  • A. P. Safronov


This paper examines the feasibility of using electrophoretic deposition for producing thin films of cathode materials based on lanthanum nickel oxides (with the lanthanum nickelate La2NiO4 + δ (LNO) as the predominant phase). We have determined the particle size and zeta potential of nonaqueous suspensions of LNO micro- and nanopowders prepared by solid-state reactions, pyrolysis of liquid precursors, and laser evaporation of a target. Using ultrasonic processing, we have obtained stable LNO nanopowder suspensions in acetylacetone and an isopropanol + acetylacetone mixture, which have zeta potentials of +25 and + 38 mV, respectively. Electrophoretic deposition on a dense model cathode has produced thin bilayer coatings from electrode and electrolyte materials (LNO and Се0.8(Sm0.75Sr0.2Ba0.05)0.2O2–δ), which are of interest for solid oxide fuel cell technology.


nanopowders electrode materials electrophoretic deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woolley, R.J. and Skinner, S.J., Functionally graded composite La2NiO4 + δ and La4Ni3O10–δ solid oxide fuel cell cathodes, Solid State Ionics, 2014, vol. 255, pp. 1–5.CrossRefGoogle Scholar
  2. 2.
    Skinner, S.J. and Kilner, J.A., Oxygen diffusion and surface exchange in La2 − xSrxNiO4 + δ, Solid State Ionics, 2000, vol. 135, pp. 709–712.CrossRefGoogle Scholar
  3. 3.
    Zhao, K., Wang, Y.-P., Chen, M., Xu, Q., Kim, B.-H., and Huang, D.-P., Electrochemical evaluation of La2NiO4 + δ as a cathode material for intermediate temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 7120–7130.CrossRefGoogle Scholar
  4. 4.
    Hildenbrand, N., Nammensma, P., Blank, D.H.A., Bouwmeester, H.J.M., and Boukamp, B.A., Influence of configuration and microstructure on performance of La2NiO4 ± δ intermediate-temperature solid oxide fuel cells cathodes, J. Power Sources, 2013, vol. 238, pp. 442–453.CrossRefGoogle Scholar
  5. 5.
    Besra, L. and Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 2007, vol. 52, pp. 1–61.CrossRefGoogle Scholar
  6. 6.
    Corni, I., Ryan, M.P., and Boccaccini, A.R., Electrophoretic deposition: from traditional ceramics to nanotechnology, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 1353–1367.CrossRefGoogle Scholar
  7. 7.
    Kalinina, E.G., Lyutyagina, N.A., Leiman, D.V., and Safronov, A.P., Influence of the degree of deaggregation of YSZ nanopowders in suspension on the process of electrophoretic deposition, Nanotechnol. Russ., 2014, vol. 9, nos. 5–6, pp. 274–279.CrossRefGoogle Scholar
  8. 8.
    Safronov, A.P., Kalinina, E.G., Kotov, Yu.A., et al., Electrophoretic deposition of nanopowders on porous surfaces, Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, pp. 162–169.Google Scholar
  9. 9.
    Kalinina, E.G., Physicochemical aspects of the electrophoretic deposition of ZrO2-based thin-film solid electrolyte, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Yekaterinburg: Ural. State Univ., 2010, p.23.Google Scholar
  10. 10.
    Kalinina, E.G., Pikalova, E.Yu., Menshikova, A.V., and Nikolaenko, I.V., Electrophoretic deposition of a self-stabilizing suspension based on a nanosized multicomponent electrolyte powder prepared by the laser evaporation method, Solid State Ionics, 2016, vol. 288, pp. 110–114.CrossRefGoogle Scholar
  11. 11.
    Kalinina, E.G., Samatov, O.M., and Safronov, A.P., Stable suspensions of doped ceria nanopowders for electrophoretic deposition of coatings for solid oxide fuel cells, Inorg. Mater., 2016, vol. 52, no. 8, pp. 858–864.CrossRefGoogle Scholar
  12. 12.
    Kalinina, E.G., Lyutyagina, N.A., Safronov, A.P., and Buyanova, E.S., Electrophoretic deposition of Y2O3-stabilized ZrO2 nanoparticles on the surface of dense La0.7Sr0.3MnO3–δ cathodes produced by pyrolysis and solid-state reaction, Inorg. Mater., 2014, vol. 50, no. 2, pp. 184–190.CrossRefGoogle Scholar
  13. 13.
    Kalinina, E.G. and Lyutyagina, N.A., Effect of the electrokinetic properties of nonaqueous YSZ nanopowder suspensions on the formation of a thin-film solid oxide fuel cell electrolyte, Zh. Fiz. Khim., 2014, vol. 88, no. 11, p. 1840–1844.Google Scholar
  14. 14.
    Kalinina, E.G., Efimov, A.A., and Safronov, A.P., The influence of nanoparticle aggregation on formation of ZrO2 electrolyte thin films by electrophoretic deposition, Thin Solid Films, 2016, vol. 612, no. 1, pp. 66–71.CrossRefGoogle Scholar
  15. 15.
    Pikalova, E.Yu., Nikonov, A.V., Zhuravlev, V.D., Bamburov, V.G., Samatov, O.M., et al., Effect of the synthesis technique on the physicochemical properties of Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2–δ, Inorg. Mater., 2011, vol. 47, no. 4, pp. 396–401.CrossRefGoogle Scholar
  16. 16.
    Das, D., Bagchi, B., and Basu, R.N., Nanostructured zirconia thin film fabricated by electrophoretic deposition technique, J. Alloys Compd., 2017, vol. 693, pp. 1220–1230.CrossRefGoogle Scholar
  17. 17.
    Kosmulski, M., Chemical Properties of Material Surfaces, New York: Marcel Dekker, 2001, p.248.CrossRefGoogle Scholar
  18. 18.
    Safronov, A.P., Kalinina, E.G., Smirnova, T.A., Leiman, D.V., and Bagazeev, A.V., Self-stabilization of aqueous suspensions of alumina nanoparticles obtained by electrical explosion, Russ. J. Phys. Chem. A, 2010, vol. 84, no. 12, pp. 2122–2127.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. G. Kalinina
    • 1
    • 2
  • E. Yu. Pikalova
    • 2
    • 3
  • A. P. Safronov
    • 1
    • 2
  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations